cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A276625 Finitary numbers. Matula-Goebel numbers of rooted identity trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 39, 41, 47, 55, 58, 62, 65, 66, 78, 79, 82, 87, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 143, 145, 155, 158, 165, 167, 174, 179, 186, 195, 202, 205, 211, 218, 226, 235, 237, 246, 254, 257, 271, 274, 282, 286, 290, 293, 303, 310, 313, 317, 319, 327, 330
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2016

Keywords

Comments

For any positive integer n the following are equivalent:
(1) n is a finitary number.
(2) prime(n) is a finitary number.
(3) n is a product of distinct finitary prime numbers.
These conditions are necessary and sufficient to define an infinite set of positive integers but do not specify how this set should be enumerated or indexed (is there a more natural way? viz. A215366) so here they are listed in increasing order of the corresponding Matula-Goebel numbers. The following comment is from A007097.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, Feb 18 2012
Notes on use of the word "finitary": It is possible to have a finite set containing an infinite set. For example {{1,2,3...}} contains only one element. In contrast, a finitary set is a finite set whose elements are also required to be finitary sets. There are also no multisets allowed in finitary sets, although you can have repeated elements. For example {{{}},{{},{{}}}} is still considered a finitary set even though the multiset union {{},{},{{}}} is not a set. The finitary numbers of A276625 refer to multisets (trees) that don't involve any proper multisets (i.e. only sets). This is in addition to the (somewhat redundant) meaning of finitary sets as described in this comment on A004111 "There is a natural correspondence between rooted identity trees and finitary sets (sets whose transitive closure is finite); each node represents a set, with the children of that node representing the members of that set. When the set corresponding to an identity tree is written out using braces, there is one set of braces for each node of the tree; thus a(n) is also the number of sets that can be made using n pairs of braces. - Franklin T. Adams-Watters, Oct 25 2011" - Gus Wiseman, Oct 03 2016

Examples

			This sequence is proposed to be a canonical representation for rooted identity trees. The first thirty terms are the following.
1  ()           26 (()(()(())))     62  (()((((())))))
2  (())         29 ((()((()))))     65  (((()))(()(())))
3  ((()))       30 (()(())((())))   66  (()(())(((()))))
5  (((())))     31 (((((())))))     78  (()(())(()(())))
6  (()(()))     33 ((())(((()))))   79  ((()(((())))))
10 (()((())))   39 ((())(()(())))   82  (()((()(()))))
11 ((((()))))   41 (((()(()))))     87  ((())(()((()))))
13 ((()(())))   47 (((())((()))))   93  ((())((((())))))
15 ((())((()))) 55 (((()))(((())))) 94  (()((())((()))))
22 (()(((())))) 58 (()(()((()))))   101 ((()(()(()))))
We build the sequence as follows: The empty product is 1, so by (3) 1 is finitary. So is prime(1) = 2 by (2), so is prime(2) = 3 by (2), so is prime(3) = 5 by (2), so is 2*3 = 6 by (3), and so on. - _N. J. A. Sloane_, Oct 03 2016
		

Crossrefs

Cf. A000040 (prime numbers), A000720 (PrimePi).
Cf. A004111 (identity trees), A116540 (set multipartitions). Contained in A005117 (squarefree numbers). Contains A076146 (ordinal numbers), A007097 (rooted paths), A277098 (finitary primes).
Cf. A206497 (automorphism group sizes), A348066 (reduce to identity tree).

Programs

  • Mathematica
    primeMS[n_Integer?Positive]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    finitaryQ[n_Integer?Positive]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And];
    fin[n_Integer?Positive]:=If[n===1,1,Block[{x=fin[n-1]+1},While[Not[finitaryQ[x]],x++];x]];
    Array[fin,200]

Formula

a(n) = primePi(A277098(n)).

A062457 a(n) = prime(n)^n.

Original entry on oeis.org

2, 9, 125, 2401, 161051, 4826809, 410338673, 16983563041, 1801152661463, 420707233300201, 25408476896404831, 6582952005840035281, 925103102315013629321, 73885357344138503765449, 12063348350820368238715343, 3876269050118516845397872321
Offset: 1

Views

Author

Labos Elemer, Jul 09 2001

Keywords

Comments

Heinz numbers of square integer partitions, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 14 2018
Main diagonal of A182944. - Omar E. Pol, Sep 12 2018
Second diagonal of A319075. - Omar E. Pol, Sep 13 2018

Crossrefs

Programs

Formula

a(n) = A062006(n) - 1. - Wesley Ivan Hurt, Jan 18 2016
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A093358.
Sum_{n>=1} (-1)^(n+1)/a(n) = A201614. (End)

A033286 a(n) = n * prime(n).

Original entry on oeis.org

2, 6, 15, 28, 55, 78, 119, 152, 207, 290, 341, 444, 533, 602, 705, 848, 1003, 1098, 1273, 1420, 1533, 1738, 1909, 2136, 2425, 2626, 2781, 2996, 3161, 3390, 3937, 4192, 4521, 4726, 5215, 5436, 5809, 6194, 6513, 6920, 7339, 7602, 8213, 8492, 8865, 9154, 9917
Offset: 1

Views

Author

Keywords

Comments

Does an n exist such that n*prime(n)/(n+prime(n)) is an integer? - Ctibor O. Zizka, Mar 04 2008. The answer to Zizka's question is easily seen to be No: such an integer k would be positive and less than prime(n), but then k*(n + prime(n)) = prime(n)*n would be impossible. - Robert Israel, Apr 20 2015
Sums of rows of the triangle in A005145. - Reinhard Zumkeller, Aug 05 2009
Complement of A171520(n). - Jaroslav Krizek, Dec 13 2009
Partial sums of A090942. - Omar E. Pol, Apr 20 2015

Crossrefs

Cf. A005145 (primes repeated), A171520 (complement), A076146 (iterated).

Programs

Formula

a(n) = n * A000040(n) = n * A008578(n+1) = n * A158611(n+2). - Jaroslav Krizek, Aug 31 2009
a(n) = A007504(n) + A152535(n). - Omar E. Pol, Aug 09 2012
Sum_{n>=1} 1/a(n) = A124012. - Amiram Eldar, Oct 15 2020

Extensions

Correction for change of offset in A158611 and A008578 in Aug 2009 from Jaroslav Krizek, Jan 27 2010

A317713 Number of distinct terminal subtrees of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 3, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 3, 3, 4, 4, 5, 4, 3, 4, 4, 3, 3, 5, 4, 6, 2, 5, 4, 5, 3, 4, 3, 4, 4, 5, 4, 4, 5, 4, 4, 5, 3, 3, 4, 5, 4, 3, 3, 5, 3, 4, 5, 5, 4, 4, 6, 4, 2, 5, 5, 4, 4, 4, 5, 5, 3, 5, 4, 4, 3, 6, 4, 6, 4, 3, 5, 5, 4, 6, 4, 5, 5, 4, 4, 5, 4, 6, 5, 5, 3, 5, 3, 5, 4, 5, 5, 4, 4, 5, 3, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Examples

			20 is the Matula-Goebel number of the tree (oo((o))), which has 4 distinct terminal subtrees: {(oo((o))), ((o)), (o), o}. So a(20) = 4.
See also illustrations in A061773.
		

Crossrefs

Programs

  • Mathematica
    ids[n_]:=Union@@FixedPointList[Union@@(Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>PrimePi[p]]&/@#)&,{n}];
    Table[Length[ids[n]],{n,100}]
  • PARI
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A324923(n) = { my(lista = List([]), gpf, i); while(n > 1, gpf=A006530(n); i = primepi(gpf); n /= gpf; n *= i; listput(lista,i)); #Set(lista); }; \\ Antti Karttunen, Oct 23 2023
    A317713(n) = (1+A324923(n)); \\ Antti Karttunen, Oct 23 2023

Formula

a(n) = 1+A324923(n). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 23 2023

A290760 Matula-Goebel numbers of transitive rooted identity trees (or transitive finitary sets).

Original entry on oeis.org

1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, 3390, 4290, 7878, 9570, 10230, 11310, 13026, 15510, 15990, 18330, 26070, 30966, 37290, 39390, 40890, 44070, 45210, 65130, 84810, 94830, 98310, 104610, 122070, 124410, 132990, 154830, 159330, 175890, 198330, 201630
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2017

Keywords

Comments

A rooted tree is transitive if every terminal subtree is a branch of the root. A finitary set is transitive if every element is also a subset.

Examples

			Let o = {}. The sequence of transitive finitary sets begins:
1     o
2     {o}
6     {o,{o}}
30    {o,{o},{{o}}}
78    {o,{o},{o,{o}}}
330   {o,{o},{{o}},{{{o}}}}
390   {o,{o},{{o}},{o,{o}}}
870   {o,{o},{{o}},{o,{{o}}}}
1410  {o,{o},{{o}},{{o},{{o}}}}
3198  {o,{o},{o,{o}},{{o,{o}}}}
3390  {o,{o},{{o}},{o,{o},{{o}}}}
4290  {o,{o},{{o}},{{{o}}},{o,{o}}}
7878  {o,{o},{o,{o}},{o,{o,{o}}}}
9570  {o,{o},{{o}},{{{o}}},{o,{{o}}}}
10230 {o,{o},{{o}},{{{o}}},{{{{o}}}}}
11310 {o,{o},{{o}},{o,{o}},{o,{{o}}}}
13026 {o,{o},{o,{o}},{{o},{o,{o}}}}
15510 {o,{o},{{o}},{{{o}}},{{o},{{o}}}}
15990 {o,{o},{{o}},{o,{o}},{{o,{o}}}}
18330 {o,{o},{{o}},{o,{o}},{{o},{{o}}}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    finitaryQ[n_]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And];
    subprimes[n_]:=If[n===1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]];
    transitaryQ[n_]:=Divisible[n,Times@@subprimes[n]];
    nn=100000;Fold[Select,Range[nn],{finitaryQ,transitaryQ}]

A318046 a(n) is the number of initial subtrees (subtrees emanating from the root) of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 3, 2, 5, 4, 5, 3, 4, 3, 7, 2, 4, 5, 3, 4, 5, 5, 6, 3, 10, 4, 9, 3, 5, 7, 6, 2, 9, 4, 7, 5, 4, 3, 7, 4, 5, 5, 4, 5, 13, 6, 8, 3, 5, 10, 7, 4, 3, 9, 13, 3, 5, 5, 5, 7, 6, 6, 9, 2, 10, 9, 4, 4, 11, 7, 5, 5, 6, 4, 19, 3, 9, 7, 6, 4, 17, 5, 7, 5
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

We require that an initial subtree contain either all or none of the branchings under any given node.

Examples

			70 is the Matula-Goebel number of the tree (o((o))(oo)), which has 7 distinct initial subtrees: {o, (ooo), (oo(oo)), (o(o)o), (o(o)(oo)), (o((o))o), (o((o))(oo))}. So a(70) = 7.
		

Crossrefs

Programs

  • Mathematica
    si[n_]:=If[n==1,1,1+Product[si[PrimePi[b[[1]]]]^b[[2]],{b,FactorInteger[n]}]];
    Array[si,100]

Formula

a(1) = 1 and if n > 1 has prime factorization n = prime(x_1)^y_1 * ... * prime(x_k)^y_k then a(n) = 1 + a(x_1)^y_1 * ... * a(x_k)^y_k.

A348067 Matula-Goebel tree number of tree n with a new leaf added below each existing vertex.

Original entry on oeis.org

2, 6, 26, 18, 202, 78, 122, 54, 338, 606, 2462, 234, 794, 366, 2626, 162, 1346, 1014, 502, 1818, 1586, 7386, 4546, 702, 20402, 2382, 4394, 1098, 8914, 7878, 43954, 486, 32006, 4038, 12322, 3042, 2962, 1506, 10322, 5454, 12178, 4758, 4946, 22158, 34138, 13638
Offset: 1

Views

Author

Kevin Ryde, Oct 01 2021

Keywords

Comments

k times nested a(a(...a(1))) = A076146(k+1) is the Matula-Goebel number of the binomial tree order k constructed by an "expansion" method starting from a singleton and successively adding a new leaf under every vertex.

Examples

			tree n=6   tree a(6) = 78
  R             R___        root R
  | \           |\  \
  A  B          A @  B      new vertices
  |             |\    \     "@" below each
  C             C @    @    existing
                 \
                  @
		

Crossrefs

Cf. A027746 (prime factors), A076146 (binomial tree).
Cf. A297002 (add leaves under children of the root).

Programs

  • PARI
    a(n) = my(f=factor(n)); 2*factorback([prime(self()(primepi(p))) | p<-f[,1]], f[,2]);

Formula

a(n) = 2 * Product_{i=1..k} prime(a(primepi(p[i]))), where n = p[1]*...*p[k] is the prime factorization of n with multiplicity (A027746).

A358650 Matula-Goebel tree number of the binomial tree of n vertices.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 42, 78, 156, 234, 546, 1014, 2886, 4758, 14118, 30966, 61932, 92898, 216762, 402558, 1145742, 1888926, 5604846, 12293502, 28210026, 45860646, 121727346, 249864654, 813198126, 1423166394, 4740553974, 11234495766, 22468991532, 33703487298
Offset: 1

Views

Author

Kevin Ryde, Nov 25 2022

Keywords

Comments

The top-down definition of the binomial tree suits Matula-Goebel numbering: The tree of n = 2^k + r vertices, for 1 <= r <= 2^k is the binomial tree of 2^k vertices and a child subtree under the root which is the binomial tree of r vertices.
In the tree of n vertices, adding a new singleton child under each vertex gives the tree of 2*n vertices, so that a(2*n) = A348067(a(n)).

Examples

			The tree of n=13 vertices numbered 0..12 is
  0
  | \  \    \
  1  2  4     8
     |  | \   | \  \
     3  5  6  9 10  12
           |     |
           7    11
Vertices 0..7 are the binomial tree of 2^k = 8 vertices, and vertices 8..12 are the binomial tree of 5 vertices.
Using the recurrence, a(13) = a(8 + 5) = a(8) * prime(a(5)) = 78*37 = 2886.
		

Crossrefs

Programs

  • PARI
    \\ See links.

Formula

a(2^k + r) = a(2^k) * prime(a(r)) for 1 <= r <= 2^k.
a(2^k) = A076146(k+1), being a tree of order k.

A292433 a(0) = 0, a(1) = 1; a(n) = prime(a(n-1))*a(n-1) + a(n-2).

Original entry on oeis.org

0, 1, 2, 7, 121, 79988, 81600798165, 182421074243967704954243
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2017

Keywords

Examples

			+---+-------------+--------------------+-------------------+
| n | a(n)/a(n+1) | Continued fraction |      Comment      |
+---+-------------+--------------------+-------------------+
| 1 |    1/2      | [0; 2]             |   2 = prime(a(1)) |
+---+-------------+--------------------+-------------------+
| 2 |    2/7      | [0; 3, 2]          |   3 = prime(a(2)) |
+---+-------------+--------------------+-------------------+
| 3 |    7/121    | [0; 17, 3, 2]      |  17 = prime(a(3)) |
+---+-------------+--------------------+-------------------+
| 4 |  121/79988  | [0; 661, 17, 3, 2] | 661 = prime(a(4)) |
+---+-------------+--------------------+-------------------+
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == Prime[a[n - 1]] a[n - 1] + a[n - 2]}, a[n], {n, 7}]

A333373 a(n) = n + 1 for n <= 1; thereafter a(n) = a(n-1) * prime(gpf(a(n-1))).

Original entry on oeis.org

1, 2, 6, 30, 330, 10230, 1299210, 921139890, 4956653748090, 261270175715571990, 169405230502395438168090, 1649555141343581679123602303970, 287748466487735183193170029972221262770, 1052440045241486547790272887133572295775622539770
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2020

Keywords

Comments

For n > 1, a(n) belongs to A083207 (see "product" formula below and my Jan 16 2020 comment in A083207). - Ivan N. Ianakiev, Mar 17 2020

Examples

			a(7) = a(6) * prime(gpf(a(6))) = prime(1) * prime(2) * prime(3) * prime(5) * prime(11) * prime(31) * prime(127) = 2 * 3 * 5 * 11 * 31 * 127 * 709 = 921139890.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[n - 1] Prime[FactorInteger[a[n - 1]][[-1, 1]]]; Table[a[n], {n, 0, 13}]
    Table[Times @@ NestList[Prime@# &, 1, n], {n, 0, 13}]

Formula

a(n) = Product_{k=0..n} A007097(k).
A156061(a(n+1)) = a(n).
A052126(a(n+1)) = a(n).
Showing 1-10 of 10 results.