cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A083075 Square array read by antidiagonals: T(n,k) = (k*(2*k+3)^n + 1)/(k+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 33, 63, 1, 1, 9, 61, 229, 313, 1, 1, 11, 97, 547, 1601, 1563, 1, 1, 13, 141, 1065, 4921, 11205, 7813, 1, 1, 15, 193, 1831, 11713, 44287, 78433, 39063, 1, 1, 17, 253, 2893, 23801, 128841, 398581, 549029, 195313, 1, 1, 19, 321
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Examples

			Array begins:
  1     1     1     1     1 ...
  1     3    13    63   313 ...
  1     5    33   229  1601 ...
  1     7    61   547  4921 ...
  1     9    97  1065 11713 ...
  ...
		

Crossrefs

Columns include odds, A082109, A083079.
Diagonals include A083079, A083080, A083081, A083082.

Programs

  • Maple
    T := proc(n,k) return (k*(2*k+3)^n+1)/(k+1): end: seq(seq(T(k,n-k),k=0..n),n=0..10); # Nathaniel Johnston, Jun 26 2011

A188646 Array of a(n)=a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2-1)+x)^2 for integers x>=1.

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 181, 33, 1, 1, 2521, 1121, 61, 1, 1, 35113, 38081, 3781, 97, 1, 1, 489061, 1293633, 234361, 9505, 141, 1, 1, 6811741, 43945441, 14526601, 931393, 20021, 193, 1, 1, 94875313, 1492851361, 900414901, 91267009, 2842841, 37441, 253, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; constant k=f(x, y); and initial term a(0)=1; then for all integers x>=1 and y=[+-]1, k may be irrational, but sequence a(n)=a(n-1)*k-((k-1)/(k^n)) always produces integer sequences; y=-1 results shown here; y=1 results are A188647.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is (1/n) * T_{2*k+1}(n), with the Chebyshev polynomials of the first kind (type T). - Seiichi Manyama, Jan 01 2019

Examples

			Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   1,      1,         1,            1, ...
   2 | 1,  13,    181,      2521,        35113, ...
   3 | 1,  33,   1121,     38081,      1293633, ...
   4 | 1,  61,   3781,    234361,     14526601, ...
   5 | 1,  97,   9505,    931393,     91267009, ...
   6 | 1, 141,  20021,   2842841,    403663401, ...
   7 | 1, 193,  37441,   7263361,   1409054593, ...
   8 | 1, 253,  64261,  16322041,   4145734153, ...
   9 | 1, 321, 103361,  33281921,  10716675201, ...
  10 | 1, 397, 158005,  62885593,  25028308009, ...
  11 | 1, 481, 231841, 111746881,  53861764801, ...
  12 | 1, 573, 328901, 188788601, 108364328073, ...
  13 | 1, 673, 453601, 305726401, 206059140673, ...
  14 | 1, 781, 610741, 477598681, 373481557801, ...
  15 | 1, 897, 805505, 723342593, 649560843009, ...
  ...
		

Crossrefs

Column 1 is A082109(n-1).
Cf. A188644, A188647 (f(x, y) as above with y=1).
Diagonal gives A322904.

Programs

Formula

A(n,k) = 2 * A188644(n,k) - A(n,k-1).
A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j+1)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited and extended by Seiichi Manyama, Jan 01 2019

A082105 Array A(n, k) = (k*n)^2 + 4*(k*n) + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 13, 13, 1, 1, 22, 33, 22, 1, 1, 33, 61, 61, 33, 1, 1, 46, 97, 118, 97, 46, 1, 1, 61, 141, 193, 193, 141, 61, 1, 1, 78, 193, 286, 321, 286, 193, 78, 1, 1, 97, 253, 397, 481, 481, 397, 253, 97, 1, 1, 118, 321, 526, 673, 726, 673, 526, 321, 118, 1
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Examples

			Array, A(n, k), begins as:
  1,  1,   1,   1,   1,   1, ... A000012;
  1,  6,  13,  22,  33,  46, ... A028872;
  1, 13,  33,  61,  97, 141, ... A082109;
  1, 22,  61, 118, 193, 286, ... ;
  1, 33,  97, 193, 321, 481, ... ;
  1, 46, 141, 286, 481, 726, ... ;
Triangle, T(n, k), begins as:
  1;
  1,  1;
  1,  6,   1;
  1, 13,  13,   1;
  1, 22,  33,  22,   1;
  1, 33,  61,  61,  33,   1;
  1, 46,  97, 118,  97,  46,   1;
  1, 61, 141, 193, 193, 141,  61,  1;
  1, 78, 193, 286, 321, 286, 193, 78,  1;
		

Crossrefs

Programs

  • Magma
    [(k*(n-k))^2 + 4*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    T[n_, k_]:= (k*(n-k))^2 + 4*(k*(n-k)) + 1;
    Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    def A082105(n,k): return (k*(n-k))^2 + 4*(k*(n-k)) + 1
    flatten([[A082105(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022

Formula

A(n, k) = (k*n)^2 + 4*(k*n) + 1 (square array).
A(n, n) = T(2*n, n) = A082106(n) (main diagonal).
T(n, k) = A(n-k, k) (number triangle).
Sum_{k=0..n} T(n, k) = A082107(n) (diagonal sums).
T(n, n-1) = A028872(n-1), n >= 1.
T(n, n-2) = A082109(n-2), n >= 2.
From G. C. Greubel, Dec 22 2022: (Start)
Sum_{k=0..n} (-1)^k * T(n, k) = ((1+(-1)^n)/2)*A016897(n-1).
T(2*n+1, n+1) = A047673(n+1), n >= 0.
T(n, n-k) = T(n, k). (End)

A028874 Primes of form k^2 - 3.

Original entry on oeis.org

13, 61, 97, 193, 397, 673, 1021, 1153, 1597, 1933, 2113, 3361, 4093, 4621, 6397, 7393, 7741, 8461, 9601, 12097, 12541, 13921, 15373, 16381, 18493, 19597, 20161, 21313, 26893, 29581, 36097, 37633, 40801, 42433, 43261, 47521, 48397
Offset: 1

Views

Author

Keywords

Comments

Also primes equal to the product of two consecutive odd numbers (A000466) minus 2. - Giovanni Teofilatto, Feb 11 2010
All terms are of the form 6m + 1. - Zak Seidov, May 01 2014

Examples

			61 is prime and equal to 8^2 - 3, so it is in the sequence.
67 is prime but it's 8^2 + 3 = 9^2 - 14, so it is not in the sequence.
9^2 - 3 = 78 but it's composite, so it's not in the sequence either.
		

Crossrefs

Cf. A002476 (Primes of form 6m + 1), A028871, A028872, A028873.
Primes terms in A082109. Subsequence of A068228. - Klaus Purath, Jan 09 2023

Programs

Formula

A028872 INTERSECT A000040. - Klaus Purath, Dec 07 2020
a(n) = A028873(n)^2 - 3. - Amiram Eldar, Mar 01 2025

A082107 Diagonal sums of number array A082105.

Original entry on oeis.org

1, 2, 8, 28, 79, 190, 406, 792, 1437, 2458, 4004, 6260, 9451, 13846, 19762, 27568, 37689, 50610, 66880, 87116, 112007, 142318, 178894, 222664, 274645, 335946, 407772, 491428, 588323, 699974, 828010, 974176, 1140337, 1328482, 1540728
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n^5+20*n^3+9*n+30)/30: n in [0..50]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {1,2,8,28,79,190}, 51] (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    [(n^5+20*n^3+9*n+30)/30 for n in range(51)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = (n^5 + 20*n^3 + 9*n + 30)/30.
G.f.: (1-4*x+11*x^2-10*x^3+6*x^4)/(1-x)^6 . - R. J. Mathar, Mar 27 2019
E.g.f.: (1/30)*(30 +30*x +75*x^2 +45*x^3 +10*x^4 +x^5)*exp(x). - G. C. Greubel, Dec 22 2022

A082106 Main diagonal of number array A082105.

Original entry on oeis.org

1, 6, 33, 118, 321, 726, 1441, 2598, 4353, 6886, 10401, 15126, 21313, 29238, 39201, 51526, 66561, 84678, 106273, 131766, 161601, 196246, 236193, 281958, 334081, 393126, 459681, 534358, 617793, 710646, 813601, 927366, 1052673, 1190278, 1340961, 1505526, 1684801
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Comments

4*a(n) can be written as (n^2 + 2*n + 1)^2 + (n^2 - 2*n + 1)^2 + (n^2 - 2*n - 1)^2 + (n^2 + 2*n - 1)^2. - Bruno Berselli, Jun 20 2014

Crossrefs

Programs

  • Magma
    [(n^2+2)^2 -3: n in [0..40]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    Table[n^4+4n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,6,33,118,321},40] (* Harvey P. Dale, Dec 06 2012 *)
  • SageMath
    [(n^2+2)^2 -3 for n in range(41)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = n^4 + 4*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Dec 06 2012
G.f.: (1 + x + 13*x^2 + 3*x^3 + 6*x^4)/(1 - x)^5. - Bruno Berselli, Jun 20 2014
E.g.f.: (1 + 5*x + 11*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 22 2022
Sum_{n>=0} 1/a(n) = 1/2 + (Pi/4)*((1/sqrt(2)+1/sqrt(6))*coth(sqrt(2-sqrt(3))*Pi) - (1/sqrt(2)-1/sqrt(6))*coth(sqrt(2+sqrt(3))*Pi)). - Amiram Eldar, Jan 08 2023

A082112 a(n) = 4*n^2 + 10*n + 1.

Original entry on oeis.org

1, 15, 37, 67, 105, 151, 205, 267, 337, 415, 501, 595, 697, 807, 925, 1051, 1185, 1327, 1477, 1635, 1801, 1975, 2157, 2347, 2545, 2751, 2965, 3187, 3417, 3655, 3901, 4155, 4417, 4687, 4965, 5251, 5545, 5847, 6157, 6475, 6801, 7135, 7477, 7827, 8185, 8551
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

A row of number array A082110.

Crossrefs

Programs

Formula

a(n) = a(n-1) + 8*n + 6 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: (1+12*x-5*x^2) / (1-x)^3. - R. J. Mathar, Dec 03 2014
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Wesley Ivan Hurt, Dec 22 2021
E.g.f.: (1 + 14*x + 4*x^2)*exp(x). - G. C. Greubel, Dec 22 2022

A083079 4th column of number array A083075.

Original entry on oeis.org

1, 63, 229, 547, 1065, 1831, 2893, 4299, 6097, 8335, 11061, 14323, 18169, 22647, 27805, 33691, 40353, 47839, 56197, 65475, 75721, 86983, 99309, 112747, 127345, 143151, 160213, 178579, 198297, 219415, 241981, 266043, 291649, 318847, 347685
Offset: 0

Views

Author

Paul Barry, Apr 23 2003

Keywords

Crossrefs

Cf. A082109.

Programs

  • Magma
    [8*n^3+28*n^2+26*n+1: n in [0..30]]; // Vincenzo Librandi, Nov 12 2011
  • Mathematica
    Table[8 n^3 + 28 n^2 + 26 n + 1, {n, 0, 40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,63,229,547},40] (* Harvey P. Dale, May 14 2011 *)

Formula

a(n) = 8*n^3 + 28*n^2 + 26*n + 1 = (n*(2n+3)^3 + 1)/(n+1).
G.f.: (1 + 59*x - 17*x^2 + 5*x^3)/(1-x)^4. - Harvey P. Dale, May 14 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=63, a(2)=229, a(3)=547. - Harvey P. Dale, May 14 2011

A227786 Take squares larger than 1, subtract 3 from even squares and 2 from odd squares; a(n) = a(n-1) + A168276(n+1) (with a(1) = 1).

Original entry on oeis.org

1, 7, 13, 23, 33, 47, 61, 79, 97, 119, 141, 167, 193, 223, 253, 287, 321, 359, 397, 439, 481, 527, 573, 623, 673, 727, 781, 839, 897, 959, 1021, 1087, 1153, 1223, 1293, 1367, 1441, 1519, 1597, 1679, 1761, 1847, 1933, 2023, 2113, 2207, 2301, 2399, 2497, 2599, 2701
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2013

Keywords

Comments

Conjecture: from n>=2 onward, a(n) gives the positions of 2's in A227761.
a(29) = 897 = 3*13*23 is the first term which is neither prime nor semiprime, that is, has more than two prime divisors.

Crossrefs

Bisections: A082109, A073577. Cf. also A227761.

Formula

a(n) = A000290(n+1) - 2 - (n mod 2).
a(1)=1, and for n>1, a(n) = a(n-1)+A168276(n+1).
a(n) = (1/2) * (2*n^2 + 4*n -3 + (-1)^n) = 2*A116940(n-1) + 1. a(n-1) = 2*ceiling(n^2/2) - 3 = 2*A000985(n) - 3. G.f.: x*(-x^3 - x^2 + 5*x + 1)/((1-x)^3 * (1+x)). - Ralf Stephan, Aug 10 2013

A033596 a(n) = (n^2 - 1)*(n^2 - 3).

Original entry on oeis.org

3, 0, 3, 48, 195, 528, 1155, 2208, 3843, 6240, 9603, 14160, 20163, 27888, 37635, 49728, 64515, 82368, 103683, 128880, 158403, 192720, 232323, 277728, 329475, 388128, 454275, 528528, 611523, 703920, 806403, 919680, 1044483, 1181568, 1331715, 1495728, 1674435
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (n^2), A000583 (n^4), A082109.

Programs

  • Magma
    [(n^2-1)*(n^2-3) : n in [0..30]]; // Wesley Ivan Hurt, Oct 30 2014
    
  • Maple
    A033596:=n->(n^2-1)*(n^2-3): seq(A033596(n), n=0..30); # Wesley Ivan Hurt, Oct 30 2014
  • Mathematica
    Table[(n^2 - 1)*(n^2 - 3), {n, 0, 30}] (* or *)
    CoefficientList[Series[3 (1 - 5 x + 11 x^2 + x^3)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 30 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{3,0,3,48,195},40] (* Harvey P. Dale, Nov 20 2024 *)
  • PARI
    vector(31, n, my(m=n-1); (m^2-1)*(m^2-3)) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    [(n^2-1)*(n^2-3) for n in (0..30)] # G. C. Greubel, Mar 05 2020

Formula

From Wesley Ivan Hurt, Oct 30 2014: (Start)
G.f.: 3*(1 -5*x +11*x^2 +x^3)/(1-x)^5.
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5).
a(n) = (n^2-1)*(n^2-3) = (A000290(n)-1)*(A000290(n)-3) = A000583(n) - A082109(n+1). (End)
E.g.f.: (3 - 3*x + 3*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Mar 05 2020
Showing 1-10 of 11 results. Next