A083075
Square array read by antidiagonals: T(n,k) = (k*(2*k+3)^n + 1)/(k+1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 33, 63, 1, 1, 9, 61, 229, 313, 1, 1, 11, 97, 547, 1601, 1563, 1, 1, 13, 141, 1065, 4921, 11205, 7813, 1, 1, 15, 193, 1831, 11713, 44287, 78433, 39063, 1, 1, 17, 253, 2893, 23801, 128841, 398581, 549029, 195313, 1, 1, 19, 321
Offset: 0
Array begins:
1 1 1 1 1 ...
1 3 13 63 313 ...
1 5 33 229 1601 ...
1 7 61 547 4921 ...
1 9 97 1065 11713 ...
...
-
T := proc(n,k) return (k*(2*k+3)^n+1)/(k+1): end: seq(seq(T(k,n-k),k=0..n),n=0..10); # Nathaniel Johnston, Jun 26 2011
A188646
Array of a(n)=a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2-1)+x)^2 for integers x>=1.
Original entry on oeis.org
1, 1, 1, 1, 13, 1, 1, 181, 33, 1, 1, 2521, 1121, 61, 1, 1, 35113, 38081, 3781, 97, 1, 1, 489061, 1293633, 234361, 9505, 141, 1, 1, 6811741, 43945441, 14526601, 931393, 20021, 193, 1, 1, 94875313, 1492851361, 900414901, 91267009, 2842841, 37441, 253, 1
Offset: 0
Square array begins:
| 0 1 2 3 4
-----+---------------------------------------------
1 | 1, 1, 1, 1, 1, ...
2 | 1, 13, 181, 2521, 35113, ...
3 | 1, 33, 1121, 38081, 1293633, ...
4 | 1, 61, 3781, 234361, 14526601, ...
5 | 1, 97, 9505, 931393, 91267009, ...
6 | 1, 141, 20021, 2842841, 403663401, ...
7 | 1, 193, 37441, 7263361, 1409054593, ...
8 | 1, 253, 64261, 16322041, 4145734153, ...
9 | 1, 321, 103361, 33281921, 10716675201, ...
10 | 1, 397, 158005, 62885593, 25028308009, ...
11 | 1, 481, 231841, 111746881, 53861764801, ...
12 | 1, 573, 328901, 188788601, 108364328073, ...
13 | 1, 673, 453601, 305726401, 206059140673, ...
14 | 1, 781, 610741, 477598681, 373481557801, ...
15 | 1, 897, 805505, 723342593, 649560843009, ...
...
-
A[n_, k_] := 1/n ChebyshevT[2k+1, n];
Table[A[n-k, k], {n, 1, 9}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jan 02 2019, after Seiichi Manyama *)
A082105
Array A(n, k) = (k*n)^2 + 4*(k*n) + 1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 13, 13, 1, 1, 22, 33, 22, 1, 1, 33, 61, 61, 33, 1, 1, 46, 97, 118, 97, 46, 1, 1, 61, 141, 193, 193, 141, 61, 1, 1, 78, 193, 286, 321, 286, 193, 78, 1, 1, 97, 253, 397, 481, 481, 397, 253, 97, 1, 1, 118, 321, 526, 673, 726, 673, 526, 321, 118, 1
Offset: 0
Array, A(n, k), begins as:
1, 1, 1, 1, 1, 1, ... A000012;
1, 6, 13, 22, 33, 46, ... A028872;
1, 13, 33, 61, 97, 141, ... A082109;
1, 22, 61, 118, 193, 286, ... ;
1, 33, 97, 193, 321, 481, ... ;
1, 46, 141, 286, 481, 726, ... ;
Triangle, T(n, k), begins as:
1;
1, 1;
1, 6, 1;
1, 13, 13, 1;
1, 22, 33, 22, 1;
1, 33, 61, 61, 33, 1;
1, 46, 97, 118, 97, 46, 1;
1, 61, 141, 193, 193, 141, 61, 1;
1, 78, 193, 286, 321, 286, 193, 78, 1;
-
[(k*(n-k))^2 + 4*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
-
T[n_, k_]:= (k*(n-k))^2 + 4*(k*(n-k)) + 1;
Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
-
def A082105(n,k): return (k*(n-k))^2 + 4*(k*(n-k)) + 1
flatten([[A082105(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022
A028874
Primes of form k^2 - 3.
Original entry on oeis.org
13, 61, 97, 193, 397, 673, 1021, 1153, 1597, 1933, 2113, 3361, 4093, 4621, 6397, 7393, 7741, 8461, 9601, 12097, 12541, 13921, 15373, 16381, 18493, 19597, 20161, 21313, 26893, 29581, 36097, 37633, 40801, 42433, 43261, 47521, 48397
Offset: 1
61 is prime and equal to 8^2 - 3, so it is in the sequence.
67 is prime but it's 8^2 + 3 = 9^2 - 14, so it is not in the sequence.
9^2 - 3 = 78 but it's composite, so it's not in the sequence either.
-
[a: n in [2..300] | IsPrime(a) where a is n^2-3 ]; // Vincenzo Librandi, Nov 08 2014
-
Select[Range[2, 250]^2 - 3, PrimeQ] (* Harvey P. Dale, Aug 07 2013 *)
Select[Table[n^2 - 3, {n, 2, 300}], PrimeQ] (* Vincenzo Librandi, Nov 08 2014 *)
-
select(isprime, vector(100,n,n^2-3)) \\ Charles R Greathouse IV, Nov 19 2014
A082107
Diagonal sums of number array A082105.
Original entry on oeis.org
1, 2, 8, 28, 79, 190, 406, 792, 1437, 2458, 4004, 6260, 9451, 13846, 19762, 27568, 37689, 50610, 66880, 87116, 112007, 142318, 178894, 222664, 274645, 335946, 407772, 491428, 588323, 699974, 828010, 974176, 1140337, 1328482, 1540728
Offset: 0
-
[(n^5+20*n^3+9*n+30)/30: n in [0..50]]; // G. C. Greubel, Dec 22 2022
-
LinearRecurrence[{6,-15,20,-15,6,-1}, {1,2,8,28,79,190}, 51] (* G. C. Greubel, Dec 22 2022 *)
-
[(n^5+20*n^3+9*n+30)/30 for n in range(51)] # G. C. Greubel, Dec 22 2022
A082106
Main diagonal of number array A082105.
Original entry on oeis.org
1, 6, 33, 118, 321, 726, 1441, 2598, 4353, 6886, 10401, 15126, 21313, 29238, 39201, 51526, 66561, 84678, 106273, 131766, 161601, 196246, 236193, 281958, 334081, 393126, 459681, 534358, 617793, 710646, 813601, 927366, 1052673, 1190278, 1340961, 1505526, 1684801
Offset: 0
-
[(n^2+2)^2 -3: n in [0..40]]; // G. C. Greubel, Dec 22 2022
-
Table[n^4+4n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,6,33,118,321},40] (* Harvey P. Dale, Dec 06 2012 *)
-
[(n^2+2)^2 -3 for n in range(41)] # G. C. Greubel, Dec 22 2022
A082112
a(n) = 4*n^2 + 10*n + 1.
Original entry on oeis.org
1, 15, 37, 67, 105, 151, 205, 267, 337, 415, 501, 595, 697, 807, 925, 1051, 1185, 1327, 1477, 1635, 1801, 1975, 2157, 2347, 2545, 2751, 2965, 3187, 3417, 3655, 3901, 4155, 4417, 4687, 4965, 5251, 5545, 5847, 6157, 6475, 6801, 7135, 7477, 7827, 8185, 8551
Offset: 0
-
[4*n^2 + 10*n + 1 : n in [0..50]]; // Wesley Ivan Hurt, Dec 22 2021
-
Table[n +(n+1)^2 -4, {n,1,200, 2}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
LinearRecurrence[{3,-3,1},{1,15,37},50] (* Harvey P. Dale, Dec 18 2014 *)
-
a(n)=4*n^2+10*n+1 \\ Charles R Greathouse IV, Jun 17 2017
-
[4*n^2+10*n+1 for n in range(51)] # G. C. Greubel, Dec 22 2022
A083079
4th column of number array A083075.
Original entry on oeis.org
1, 63, 229, 547, 1065, 1831, 2893, 4299, 6097, 8335, 11061, 14323, 18169, 22647, 27805, 33691, 40353, 47839, 56197, 65475, 75721, 86983, 99309, 112747, 127345, 143151, 160213, 178579, 198297, 219415, 241981, 266043, 291649, 318847, 347685
Offset: 0
-
[8*n^3+28*n^2+26*n+1: n in [0..30]]; // Vincenzo Librandi, Nov 12 2011
-
Table[8 n^3 + 28 n^2 + 26 n + 1, {n, 0, 40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,63,229,547},40] (* Harvey P. Dale, May 14 2011 *)
A227786
Take squares larger than 1, subtract 3 from even squares and 2 from odd squares; a(n) = a(n-1) + A168276(n+1) (with a(1) = 1).
Original entry on oeis.org
1, 7, 13, 23, 33, 47, 61, 79, 97, 119, 141, 167, 193, 223, 253, 287, 321, 359, 397, 439, 481, 527, 573, 623, 673, 727, 781, 839, 897, 959, 1021, 1087, 1153, 1223, 1293, 1367, 1441, 1519, 1597, 1679, 1761, 1847, 1933, 2023, 2113, 2207, 2301, 2399, 2497, 2599, 2701
Offset: 1
A033596
a(n) = (n^2 - 1)*(n^2 - 3).
Original entry on oeis.org
3, 0, 3, 48, 195, 528, 1155, 2208, 3843, 6240, 9603, 14160, 20163, 27888, 37635, 49728, 64515, 82368, 103683, 128880, 158403, 192720, 232323, 277728, 329475, 388128, 454275, 528528, 611523, 703920, 806403, 919680, 1044483, 1181568, 1331715, 1495728, 1674435
Offset: 0
-
[(n^2-1)*(n^2-3) : n in [0..30]]; // Wesley Ivan Hurt, Oct 30 2014
-
A033596:=n->(n^2-1)*(n^2-3): seq(A033596(n), n=0..30); # Wesley Ivan Hurt, Oct 30 2014
-
Table[(n^2 - 1)*(n^2 - 3), {n, 0, 30}] (* or *)
CoefficientList[Series[3 (1 - 5 x + 11 x^2 + x^3)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 30 2014 *)
LinearRecurrence[{5,-10,10,-5,1},{3,0,3,48,195},40] (* Harvey P. Dale, Nov 20 2024 *)
-
vector(31, n, my(m=n-1); (m^2-1)*(m^2-3)) \\ G. C. Greubel, Mar 05 2020
-
[(n^2-1)*(n^2-3) for n in (0..30)] # G. C. Greubel, Mar 05 2020
Showing 1-10 of 11 results.
Comments