cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000404 Numbers that are the sum of 2 nonzero squares.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178
Offset: 1

Views

Author

Keywords

Comments

From the formula it is easy to see that if k is in this sequence, then so are all odd powers of k. - T. D. Noe, Jan 13 2009
Also numbers whose cubes are the sum of two nonzero squares. - Joe Namnath and Lawrence Sze
A line perpendicular to y=mx has its first integral y-intercept at a^2+b^2. The remaining ones for that slope are multiples of that primitive value. - Larry J Zimmermann, Aug 19 2010
The primes in this sequence are sequence A002313.
Complement of A018825; A025426(a(n)) > 0; A063725(a(n)) > 0. - Reinhard Zumkeller, Aug 16 2011
If the two squares are not equal, then any power is still in the sequence: if k = x^2 + y^2 with x != y, then k^2 = (x^2-y^2)^2 + (2xy)^2 and k^3 = (x(x^2-3y^2))^2 + (y(3x^2-y^2))^2, etc. - Carmine Suriano, Jul 13 2012
There are never more than 3 consecutive terms that differ by 1. Triples of consecutive terms that differ by 1 occur infinitely many times, for example, 2(k^2 + k)^2, (k^2 - 1)^2 + (k^2 + 2 k)^2, and (k^2 + k - 1)^2 + (k^2 + k + 1)^2 for any integer k > 1. - Ivan Neretin, Mar 16 2017 [Corrected by Jerzy R Borysowicz, Apr 14 2017]
Number of terms less than 10^k, k=1,2,3,...: 3, 34, 308, 2690, 23873, 215907, 1984228, ... - Muniru A Asiru, Feb 01 2018
The squares in this sequence are the squares of the so-called hypotenuse numbers A009003. - M. F. Hasler, Jun 20 2025

Examples

			25 = 3^2 + 4^2, therefore 25 is a term. Note that also 25^3 = 15625 = 44^2 + 117^2, therefore 15625 is a term.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 103.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 75, Theorem 4, with Theorem 2, p. 15.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 251, 252.
  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

A001481 gives another version (allowing for zero squares).
Cf. A004431 (2 distinct squares), A063725 (number of representations), A024509 (numbers with multiplicity), A025284, A018825. Also A050803, A050801, A001105, A033431, A084888, A000578, A000290, A057961, A232499, A007692.
Cf. A003325 (analog for cubes), A003336 (analog for 4th powers).
Cf. A009003 (square roots of the squares in this sequence).
Column k=2 of A336725.

Programs

  • GAP
    P:=List([1..10^4],i->i^2);;
    A000404 := Set(Flat(List(P, i->List(P, j -> i+j)))); # Muniru A Asiru, Feb 01 2018
    
  • Haskell
    import Data.List (findIndices)
    a000404 n = a000404_list !! (n-1)
    a000404_list = findIndices (> 0) a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Magma
    lst:=[]; for n in [1..178] do f:=Factorization(n); if IsSquare(n) then for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 1 then Append(~lst, n); break; end if; end for; else t:=0; for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 3 and d[2] mod 2 eq 1 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, n); end if; end if; end for; lst; // Arkadiusz Wesolowski, Feb 16 2017
    
  • Maple
    nMax:=178: A:={}: for i to floor(sqrt(nMax)) do for j to floor(sqrt(nMax)) do if i^2+j^2 <= nMax then A := `union`(A, {i^2+j^2}) else  end if end do end do: A; # Emeric Deutsch, Jan 02 2017
  • Mathematica
    nMax=1000; n2=Floor[Sqrt[nMax-1]]; Union[Flatten[Table[a^2+b^2, {a,n2}, {b,a,Floor[Sqrt[nMax-a^2]]}]]]
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 24 2016 *)
    Module[{upto=200},Select[Union[Total/@Tuples[Range[Sqrt[upto]]^2,2]],#<= upto&]] (* Harvey P. Dale, Sep 18 2021 *)
  • PARI
    is_A000404(n)= for( i=1,#n=factor(n)~%4, n[1,i]==3 && n[2,i]%2 && return); n && ( vecmin(n[1,])==1 || (n[1,1]==2 && n[2,1]%2)) \\ M. F. Hasler, Feb 07 2009
    
  • PARI
    list(lim)=my(v=List(),x2); lim\=1; for(x=1,sqrtint(lim-1), x2=x^2; for(y=1,sqrtint(lim-x2), listput(v,x2+y^2))); Set(v) \\ Charles R Greathouse IV, Apr 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A000404_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            c = False
            for p in (f:=factorint(n)):
                if (q:= p & 3)==3 and f[p]&1:
                    break
                elif q == 1:
                    c = True
            else:
                if c or f.get(2,0)&1:
                    yield n
    A000404_list = list(islice(A000404_gen(),30)) # Chai Wah Wu, Jul 01 2022

Formula

Let k = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 * ... * q_s^b_s with t >= 0, a_i >= 0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j == -1 (mod 4) for j=1..s. Then k is a term iff 1) b_j == 0 (mod 2) for j=1..s and 2) r > 0 or t == 1 (mod 2) (or both).
From Charles R Greathouse IV, Nov 18 2022: (Start)
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533.
There are B(x) = (x/sqrt(log x)) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. (End)

Extensions

Edited by Ralf Stephan, Nov 15 2004
Typo in formula corrected by M. F. Hasler, Feb 07 2009
Erroneous Mathematica program fixed by T. D. Noe, Aug 07 2009
PARI code fixed for versions > 2.5 by M. F. Hasler, Jan 01 2013

A025426 Number of partitions of n into 2 nonzero squares.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

For records see A007511, A048610, A016032. - R. J. Mathar, Feb 26 2008

Crossrefs

Cf. A000161 (2 nonnegative squares), A063725 (order matters), A025427 (3 nonzero squares).
Cf. A172151, A004526. - Reinhard Zumkeller, Jan 26 2010
Column k=2 of A243148.

Programs

  • Haskell
    a025426 n = sum $ map (a010052 . (n -)) $
                          takeWhile (<= n `div` 2) $ tail a000290_list
    a025426_list = map a025426 [0..]
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    A025426 := proc(n)
        local a,x;
        a := 0 ;
        for x from 1 do
            if 2*x^2 > n then
                return a;
            end if;
            if issqr(n-x^2) then
                a := a+1 ;
            end if;
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    m[n_] := m[n] = SquaresR[2, n]/4; a[0] = 0; a[n_] := If[ EvenQ[ m[n] ], m[n]/2, (m[n] - (-1)^IntegerExponent[n, 2])/2]; Table[ a[n], {n, 0, 107}] (* Jean-François Alcover, Jan 31 2012, after Max Alekseyev *)
    nmax = 107; sq = Range[Sqrt[nmax]]^2;
    Table[Length[Select[IntegerPartitions[n, All, sq], Length[#] == 2 &]], {n, 0, nmax}] (* Robert Price, Aug 17 2020 *)
  • PARI
    a(n)={my(v=valuation(n,2),f=factor(n>>v),t=1);for(i=1,#f[,1],if(f[i,1]%4==1,t*=f[i,2]+1,if(f[i,2]%2,return(0))));if(t%2,t-(-1)^v,t)/2;} \\ Charles R Greathouse IV, Jan 31 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A025426(n): return ((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1 # Chai Wah Wu, Jul 07 2022

Formula

Let m = A004018(n)/4. If m is even then a(n) = m/2, otherwise a(n) = (m - (-1)^A007814(n))/2. - Max Alekseyev, Mar 09 2009, Mar 14 2009
a(A018825(n)) = 0; a(A000404(n)) > 0; a(A025284(n)) = 1; a(A007692(n)) > 1. - Reinhard Zumkeller, Aug 16 2011
a(A000578(n)) = A084888(n). - Reinhard Zumkeller, Jul 18 2012
a(n) = Sum_{i=1..floor(n/2)} A010052(i) * A010052(n-i). - Wesley Ivan Hurt, Apr 19 2019
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
Conjecture: Sum_{k=1..n} a(k) ~ n*Pi/8. - Vaclav Kotesovec, Dec 28 2023

A273238 Least number k such that k^3 is the sum of two nonzero squares in exactly n ways.

Original entry on oeis.org

2, 5, 25, 50, 125, 625, 1250, 65, 15625, 31250, 78125, 390625, 781250, 325, 9765625, 19531250, 48828125, 244140625, 488281250, 1625, 6103515625, 12207031250, 30517578125, 4225, 8450, 8125, 3814697265625, 7629394531250, 19073486328125, 95367431640625
Offset: 1

Views

Author

Altug Alkan, May 18 2016

Keywords

Examples

			a(1) = 2 because 2^3 = 2^2 + 2^2.
a(2) = 5 because 5^3 = 5^2 + 10^2 = 2^2 + 11^2.
a(3) = 25 because 25^3 = 35^2 + 120^2 = 44^2 + 117^2 = 75^2 + 100^2.
		

Crossrefs

Programs

  • Mathematica
    Function[t, FirstPosition[t, #] & /@ Range@ 8]@ Map[Length@ Select[ PowersRepresentations[#^3, 2, 2], ! MemberQ[#, 0] &] &, Range[2 10^3]] // Flatten (* Michael De Vlieger, May 18 2016 *)
    (* code for first 100 terms *) nR[n_] := (SquaresR[2, n] + Plus @@ Pick[{-4, 4}, IntegerQ /@ Sqrt[{n, n/2}]])/8; c[w_] := Floor[1/2 Times @@ (3 w + 1)]; q[1] = 2; q[n_] := Min[Reap[Do[ x = Times @@ (Take[{5, 13, 17, 29}, Length[e]]^e); If[c[e] == n && nR[x^3] == n, Sow[x]]; If[c[e] + 1 == n && nR[8 x^3] == n, Sow[2 x]], {e, Join[Transpose[{ Range@ 80}], Join @@ (IntegerPartitions[#, 4] & /@ Range[21]) ]}]][[2, 1]]]; Array[q, 100] (* Giovanni Resta, May 18 2016 *)
  • PARI
    A025426(n)=my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2
    a(n)=my(k=1); while(A025426(k++^3)!=n, ); k
    first(n)=my(v=vector(n),t,k); while(1, t=A025426(k++^3); if(t>0 && t<=n && v[t]==0, v[t]=k; if(factorback(v), return(v)))) \\ Charles R Greathouse IV, May 18 2016

Extensions

a(10)-a(30) from Giovanni Resta, May 18 2016

A050804 Numbers n such that n^3 is the sum of two nonzero squares in exactly one way.

Original entry on oeis.org

2, 8, 18, 32, 72, 98, 128, 162, 242, 288, 392, 512, 648, 722, 882, 968, 1058, 1152, 1458, 1568, 1922, 2048, 2178, 2592, 2888, 3528, 3698, 3872, 4232, 4418, 4608, 4802, 5832, 6272, 6498, 6962, 7688, 7938, 8192
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

m is a term if and only if m = 2^(2a_0+1)*p_1^(2a_1)*p_2^(2a_2)*...*p_k^(2a_k), where a_i are nonnegative integers and p_i are primes of the form 4k+3. - Chai Wah Wu, Feb 27 2016
m is a term if and only if for all odd q > 1, m^q is the sum of two nonzero squares in exactly one way. - Chai Wah Wu, Feb 28 2016
Numbers n such that n is the sum of two nonzero squares while n^2 is not. - Altug Alkan, Apr 11 2016

Examples

			E.g. 32^3 = 128^2 + 128^2. Is there an example using different squares?
No: If n^3 has only one representation as n^3 = a^2+b^2 with 0<a<=b, then a=b. - _Jonathan Vos Post_, Feb 02 2011
		

Crossrefs

Programs

  • Haskell
    a050804 n = a050804_list !! (n-1)
    a050804_list = filter ((== 1) . a084888) [0..]
    -- Reinhard Zumkeller, Jul 18 2012
    
  • Mathematica
    ok[n_] := Length @ Cases[ PowersRepresentations[n^3, 2, 2], {?Positive, ?Positive}] == 1; Select[Range[8200], ok] (* Jean-François Alcover, Apr 05 2011 *)
  • Python
    from sympy import factorint
    A050804_list = [2*i for i in range(1,10**6) if not any(p % 4 == 1 or factorint(i)[p] % 2 for p in factorint(i))] # Chai Wah Wu, Feb 27 2016

Formula

n such that A084888(n) = 1.

Extensions

More terms from Michel ten Voorde and Jud McCranie

A342154 Number of partitions of n^5 into two positive squares.

Original entry on oeis.org

0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 0, 3, 1, 0, 3, 0, 0, 0, 0, 5, 3, 0, 0, 3, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 3, 3, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 18, 0, 0, 3, 0, 0, 0, 1, 3, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 18, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 1, 0, 5, 3, 0, 0, 3, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2021

Keywords

Comments

a(n) > 0 if and only if n is in A000404. - Robert Israel, Mar 03 2021

Examples

			2^5 = 32 = 4^2 + 4^2. So a(2) = 1.
5^5 = 3125 = 10^2 + 55^2 = 25^2 + 50^2 = 38^2 + 41^2. So a(5) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local x,y,S;
          S:= map(t -> subs(t,[x,y]),[isolve(x^2+y^2=n^5)]);
          nops(select(t -> t[1] >= t[2] and t[2] > 0, S))
    end proc:
    map(f, [$0..200]); # Robert Israel, Mar 03 2021
  • PARI
    a(n) = my(cnt=0, m=n^5); for(k=1, sqrt(m/2), l=m-k*k; if(l>0&&issquare(l), cnt++)); cnt;

Formula

a(n) = A025426(A000584(n)).
Showing 1-5 of 5 results.