A224840 Divisor sum of the arithmetic function A085945(n).
1, 3, 6, 14, 27, 61, 117, 250, 494, 1012, 2007, 4088, 8112, 16357, 32635, 65493, 130779, 262115, 523710, 1048502, 2096110, 4194124, 8386419, 16777182, 33550085, 67108507, 134209495, 268434899, 536853987, 1073741664, 2147449815, 4294966187, 8589868975, 17179866799
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..3321
- P. Pongsriiam, Relatively Prime Sets, Divisor Sums, and Partial Sums, arXiv:1306.4891 and J. Int. Seq. 16 (2013) #13.9.1.
- P. Pongsriiam, A remark on relative prime sets, Integers 13 (2013), A49.
Programs
-
PARI
A085945(n)=sum(k=1, n, moebius(k)*(2^(n\k)-1)) a(n)=sumdiv(n,d,A085945(d)) \\ Charles R Greathouse IV, Sep 19 2013
-
PARI
a(n)=my(v=vector(n,i,i));sum(i=1,2^n-1,n%gcd(vecextract(v,i))==0) \\ Charles R Greathouse IV, Sep 19 2013
Formula
a(n) = sum{d | n} sum_{k <= d} mu(k)*(2^floor(n/k) - 1) where mu is the Moebius function.
Extensions
a(19)-a(34) from Charles R Greathouse IV, Sep 19 2013
Comments