A352738 Squares in A086849.
16, 64, 441, 729, 81796, 1320201, 2729104, 44488900, 34614230401, 209453590921, 752884200721, 5054227881921, 8106120765625, 14483961408400, 433446375390625, 530837821446724, 1270089068379481, 1383781075827264, 4819866587217081, 7032375864510896656
Offset: 1
Keywords
Examples
a(2) = 64 is a term because 64 = 8^2 = 2+3+5+6+7+8+10+11+12 is a square and the sum of the nonsquares up to 12.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..23
Programs
-
Maple
R:= NULL: count:= 0: s:= 0: for n from 1 do if issqr(n) then next fi; s:= s+n; if issqr(s) then count:= count+1; R:= R,s; if count = 19 then break fi fi; od: R;
-
Python
from itertools import islice def A352738_gen(): # generator of terms c, k, ks, m, ms = 0, 1, 2, 1, 1 while True: for n in range(ks,ks+2*k): c += n if c == ms: yield c elif c > ms: ms += 2*m+1 m += 1 ks += 2*k+1 k += 1 A352738_list = list(islice(A352738_gen(),10)) # Chai Wah Wu, Mar 31 2022
Extensions
a(20) from Jon E. Schoenfield, Mar 31 2022
Comments