cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A088764 a(n) = (A087680(n)-1)/2.

Original entry on oeis.org

3, 4, 7, 13, 16, 28, 31, 37, 46, 52, 67, 76, 88, 97, 118, 133, 136, 181, 196, 202, 217, 226, 241, 247, 283, 286, 298, 301, 328, 343, 352, 361, 373, 382, 412, 457, 466, 493, 508, 517, 532, 556, 583, 598, 613, 616, 643, 646, 661, 688, 721, 727, 742, 763, 781, 787
Offset: 1

Views

Author

Ray Chandler, Oct 26 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n-1)/2: n in [2..2000] |IsPrime(n+4) and IsPrime(n-4)]; // Vincenzo Librandi, May 19 2017
  • Mathematica
    f[n_]:=PrimeQ[n - 4] && PrimeQ[n + 4]; lst={}; Do[If[f[n], AppendTo[lst, (n - 1) / 2]], {n, 3, 7!, 2}]; lst (* Vincenzo Librandi, May 19 2017 *)
    (#-1)/2&/@(Select[Prime[Range[250]],PrimeQ[#+8]&]+4) (* Harvey P. Dale, May 21 2023 *)

A082467 Least k>0 such that n-k and n+k are both primes.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 1, 12, 3, 2, 9, 6, 5, 6, 3, 4, 9, 12, 1, 12, 9, 4, 3, 6, 5, 6, 9, 2, 3, 12, 1, 24, 3, 2, 15, 6, 5, 12, 3, 8, 9, 6, 7, 12, 3, 4, 15, 12, 1, 18, 9, 4, 3, 6, 5, 6, 15, 2, 3, 12, 1, 6, 15, 4, 3, 6, 5, 18, 9, 2, 15, 24, 5, 12, 3, 14, 9, 18, 7, 12, 9, 4, 15, 6, 7, 30, 9
Offset: 4

Views

Author

Benoit Cloitre, Apr 27 2003

Keywords

Comments

The existence of k>0 for all n >= 4 is equivalent to the strong Goldbach Conjecture that every even number >= 8 is the sum of two distinct primes.
n and k are coprime, because otherwise n + k would be composite. So the rational sequence r(n) = a(n)/n = k/n is injective. - Jason Kimberley, Sep 21 2011
Because there are arbitrarily many composites from m!+2 to m!+m, there are also arbitrarily large a(n) but they increase very slowly. The twin prime conjecture implies that infinitely many a(n) are 1. - Juhani Heino, Apr 09 2020

Examples

			n=10: k=3 because 10-3 and 10+3 are both prime and 3 is the smallest k such that n +/- k are both prime.
		

Crossrefs

Cf. A129301 (records), A129302 (where records occur).
Cf. A047160 (allows k=0).
Cf. A078611 (subset for prime n).

Programs

  • Magma
    A082467 := func; [A082467(n):n in [4..98]]; // Jason Kimberley, Sep 03 2011
  • Maple
    A082467 := proc(n) local k; k := 1+irem(n,2);
    while n > k do if isprime(n-k) then if isprime(n+k)
    then RETURN(k) fi fi; k := k+2 od; print("Goldbach erred!") end:
    seq(A082467(i),i=4..90); # Peter Luschny, Sep 21 2011
  • Mathematica
    f[n_] := Block[{k}, If[OddQ[n], k = 2, k = 1]; While[ !PrimeQ[n - k] || !PrimeQ[n + k], k += 2]; k]; Table[ f[n], {n, 4, 98}] (* Robert G. Wilson v, Mar 28 2005 *)
  • PARI
    a(n)=if(n<0,0,k=1; while(isprime(n-k)*isprime(n+k) == 0,k++); k)
    

Formula

A078496(n)-a(n) = A078587(n)+a(n) = n.

Extensions

Entries checked by Klaus Brockhaus, Apr 08 2007

A087697 Numbers k such that k + 7 and k - 7 are both prime.

Original entry on oeis.org

10, 12, 24, 30, 36, 54, 60, 66, 90, 96, 120, 144, 156, 174, 186, 204, 234, 264, 270, 276, 300, 324, 360, 366, 390, 426, 450, 456, 516, 564, 570, 594, 600, 606, 624, 654, 666, 684, 726, 750, 780, 804, 816, 846, 870, 960, 984, 990
Offset: 1

Views

Author

Zak Seidov, Sep 27 2003

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [5..1000] | IsPrime(n-7) and IsPrime(n+7)]; // Vincenzo Librandi, Jul 23 2018
  • Maple
    select(t -> isprime(t+7) and isprime(t-7), [seq(i,i=8..1000,2)]); # Robert Israel, Jul 22 2018
  • Mathematica
    Rest[Select[Range[1000], PrimeQ[# - 7] && PrimeQ[# + 7] &]] (* Vincenzo Librandi, Jul 23 2018 *)
  • PARI
    isok(n) = isprime(n-7) && isprime(n+7); \\ Michel Marcus, Jul 23 2018
    

A087711 a(n) = smallest number k such that both k-n and k+n are primes.

Original entry on oeis.org

2, 4, 5, 8, 7, 8, 11, 10, 11, 14, 13, 18, 17, 16, 17, 22, 21, 20, 23, 22, 23, 26, 25, 30, 29, 28, 33, 32, 31, 32, 37, 36, 35, 38, 37, 38, 43, 42, 41, 44, 43, 48, 47, 46, 57, 52, 51, 50, 53, 52, 53, 56, 55, 56, 59, 58, 75, 70, 69, 72, 67, 66, 65, 68, 67, 72, 71, 70, 71, 80, 81, 78
Offset: 0

Views

Author

Zak Seidov, Sep 28 2003

Keywords

Comments

Let b(n), c(n) and d(n) be respectively, smallest number m such that phi(m-n) + sigma(m+n) = 2n, smallest number m such that phi(m+n) + sigma(m-n) = 2n and smallest number m such that phi(m-n) + sigma(m+n) = phi(m+n) + sigma(m-n), we conjecture that for each positive integer n, a(n)=b(n)=c(n)=d(n). Namely we conjecture that for each positive integer n, a(n) < A244446(n), a(n) < A244447(n) and a(n) < A244448(n). - Jahangeer Kholdi and Farideh Firoozbakht, Sep 05 2014

Examples

			n=10: k=13 because 13-10 and 13+10 are both prime and 13 is the smallest k such that k +/- 10 are both prime
4-1=3, prime, 4+1=5, prime; 5-2=3, 5+2=7; 8-3=5, 8+3=11; 9-4=5, 9+4=13, ...
		

Crossrefs

Programs

  • Magma
    distance:=function(n); k:=n+2; while not IsPrime(k-n) or not IsPrime(k+n) do k:=k+1; end while; return k; end function; [ distance(n): n in [1..71] ]; /* Klaus Brockhaus, Apr 08 2007 */
    
  • Maple
    Primes:= select(isprime,{seq(2*i+1,i=1..10^3)}):
    a[0]:= 2:
    for n from 1 do
      Q:= Primes intersect map(t -> t-2*n,Primes);
      if nops(Q) = 0 then break fi;
      a[n]:= min(Q) + n;
    od:
    seq(a[i],i=0..n-1); # Robert Israel, Sep 08 2014
  • Mathematica
    s = ""; k = 0; For[i = 3, i < 22^2, If[PrimeQ[i - k] && PrimeQ[i + k], s = s <> ToString[i] <> ","; k++ ]; i++ ]; Print[s] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2008 *)
    snk[n_]:=Module[{k=n+1},While[!PrimeQ[k+n]||!PrimeQ[k-n],k++];k]; Array[ snk,80,0] (* Harvey P. Dale, Dec 13 2020 *)
  • PARI
    a(n)=my(k);while(!isprime(k-n) || !isprime(k+n),k++);return(k) \\ Edward Jiang, Sep 05 2014

Formula

a(n) = A020483(n)+n for n >= 1. - Robert Israel, Sep 08 2014

Extensions

Entries checked by Klaus Brockhaus, Apr 08 2007

A173037 Numbers k such that k-4, k-2, k+2 and k+4 are prime.

Original entry on oeis.org

9, 15, 105, 195, 825, 1485, 1875, 2085, 3255, 3465, 5655, 9435, 13005, 15645, 15735, 16065, 18045, 18915, 19425, 21015, 22275, 25305, 31725, 34845, 43785, 51345, 55335, 62985, 67215, 69495, 72225, 77265, 79695, 81045, 82725, 88815, 97845
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 07 2010

Keywords

Comments

Average k of the four primes in two twin prime pairs (k-4, k-2) and (k+2, k+4) which are linked by the cousin prime pair (k-2, k+2).
All terms are odd composites; except for a(1) they are multiples of 5.
Subsequence of A087679, of A087680 and of A164385.
All terms except for a(1) are multiples of 15. - Zak Seidov, May 18 2014
One of (k-1, k, k+1) is always divisible by 7. - Fred Daniel Kline, Sep 24 2015
Terms other than a(1) must be equivalent to 1 mod 2, 0 mod 3, 0 mod 5, and 0,+/-1 mod 7. Taken together, this requires terms other than a(1) to have the form 210k+/-15 or 210k+105. However, not all numbers of that form belong to this sequence. - Keith Backman, Nov 09 2023

Examples

			9 is a term because 9-4 = 5 is prime, 9-2 = 7 is prime, 9+2 = 11 is prime and 9+4 = 13 is prime.
		

Crossrefs

Programs

  • Magma
    [ p+4: p in PrimesUpTo(100000) | IsPrime(p) and IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8) ]; // Klaus Brockhaus, Feb 09 2010
    
  • Mathematica
    Select[Range[100000],AllTrue[#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 30 2015 *)
  • PARI
    is(n)=isprime(n-4) && isprime(n-2) && isprime(n+2) && isprime(n+4) \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    from sympy import primerange
    def aupto(limit):
        p, q, r, alst = 2, 3, 5, []
        for s in primerange(7, limit+5):
            if p+2 == q and p+6 == r and p+8 == s: alst.append(p+4)
            p, q, r = q, r, s
        return alst
    print(aupto(10**5)) # Michael S. Branicky, Feb 03 2022

Formula

For n >= 2, a(n) = 15*A112540(n-1). - Michel Marcus, May 19 2014
From Jeppe Stig Nielsen, Feb 18 2020: (Start)
For n >= 2, a(n) = 30*A014561(n-1) + 15.
For n >= 2, a(n) = 10*A007811(n-1) + 5.
a(n) = A007530(n) + 4.
a(n) = A125855(n) + 5. (End)

Extensions

Edited and extended beyond a(9) by Klaus Brockhaus, Feb 09 2010

A164385 Composite numbers n such that n+4 and n-4 are both prime.

Original entry on oeis.org

9, 15, 27, 33, 57, 63, 75, 93, 105, 135, 153, 177, 195, 237, 267, 273, 363, 393, 405, 435, 453, 483, 495, 567, 573, 597, 603, 657, 687, 705, 723, 747, 765, 825, 915, 933, 987, 1017, 1035, 1065, 1113, 1167, 1197, 1227, 1233, 1287, 1293, 1323, 1377, 1443, 1455, 1485
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 14 2009

Keywords

Comments

Composite numbers of the form A023202(k)+4, any k.
A087680 without the {7} [Proof: there are no 3 primes in arithmetic progression p, p+4, p+8, except p=3].
A164383 INTERSECT A164384; A087680 INTERSECT A002808.
If p=3*l+1, p+8 were divisible by 3, and if p=3*l+2, p+4 were divisible by 3. - R. J. Mathar, Aug 20 2009
All terms are divisible by 3. - Zak Seidov, Apr 22 2015

Examples

			a(1) = 5(prime)+4 = 13(prime)-4 = 9 (composite).
a(2) = 11(prime)+4 = 19(prime)-4 = 15 (composite).
		

Crossrefs

Programs

  • Magma
    [n: n in [8..2000] | IsPrime(n+4) and IsPrime(n-4)]; // Vincenzo Librandi, Apr 22 2015
  • Mathematica
    Select[Range[8, 2000], PrimeQ[#+4] && PrimeQ[#-4] &] (* Vincenzo Librandi, Apr 22 2015 *)
    Select[Range[9,5000],AllTrue[#+{4,-4},PrimeQ]&] (* Harvey P. Dale, Mar 23 2025 *)

Formula

a(n) = A023202(n+1)+4 = A087680(n+1). - Zak Seidov, Apr 22 2015

Extensions

65 removed, 337 changed to 237 etc. by R. J. Mathar, Aug 20 2009
Showing 1-6 of 6 results.