cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003627 Primes of the form 3n-1.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p such that 1+x+x^2 is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p dividing sum(k=0,p,C(2k,k)) -1 = A006134(p)-1. - Benoit Cloitre, Feb 08 2003
A039701(A049084(a(n))) = 2; A134323(A049084(a(n))) = -1. - Reinhard Zumkeller, Oct 21 2007
The set of primes of the form 3n - 1 is a superset of the set of lesser of twin primes larger than three (A001359). - Paul Muljadi, Jun 05 2008
Primes of this form do not occur in or as divisors of {n^2+n+1}. See A002383 (n^2+n+1 = prime), A162471 (prime divisors of n^2+n+1 not in A002383), and A002061 (numbers of the form n^2-n+1). - Daniel Tisdale, Jul 04 2009
Or, primes not in A007645. A003627 UNION A007645 = A000040. Also, primes of the form 6*k-5/2-+3/2. - Juri-Stepan Gerasimov, Jan 28 2010
Except for first term "2", all these prime numbers are of the form: 6*n-1. - Vladimir Joseph Stephan Orlovsky, Jul 13 2011
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
For n>1: Numbers k such that (k-4)! mod k =(-1)^(floor(k/3)+1)*floor((k+1)/6), k>4. - Gary Detlefs, Jan 02 2012
Binomial(a(n),3)/a(n)= (3*A024893(n)^2+A024893(n))/2, n>1. - Gary Detlefs, May 06 2012
For every prime p in this sequence, 3 is a 9th power mod p. See Williams link. - Michel Marcus, Nov 12 2017
2 adjoined to A007528. - David A. Corneth, Nov 12 2017
For n >= 2 there exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes of form 3n+1 give A002476.
These are the primes arising in A024893, A087370, A088879. A091177 gives prime index.
Subsequence of A034020.

Programs

  • Haskell
    a003627 n = a003627_list !! (n-1)
    a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Magma
    [n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
  • Mathematica
    Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
    Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n>=1} 1/a(n)^2 = 0.30792... = A085548 - 1/9 - A175644.
Sum_{n>=1} 1/a(n)^3 = 0.134125... = A085541 - 1/27 - A175645. (End)

A024893 Numbers k such that 3*k+2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 29, 33, 35, 37, 43, 45, 49, 55, 57, 59, 63, 65, 75, 77, 79, 83, 85, 87, 89, 93, 97, 103, 105, 115, 117, 119, 127, 129, 133, 139, 143, 147, 149, 153, 155, 159, 163, 167, 169, 173, 185, 187, 189, 195, 197, 199, 205, 213, 215, 217, 219, 225, 227
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003627 (associated primes), A091177 (gives prime index).

Programs

Formula

a(n) = A087370(n)-1 = A088879(n)+1.

A087370 Numbers n such that 3n - 1 is a prime.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 18, 20, 24, 28, 30, 34, 36, 38, 44, 46, 50, 56, 58, 60, 64, 66, 76, 78, 80, 84, 86, 88, 90, 94, 98, 104, 106, 116, 118, 120, 128, 130, 134, 140, 144, 148, 150, 154, 156, 160, 164, 168, 170, 174, 186, 188, 190, 196, 198, 200, 206, 214, 216
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 21 2003

Keywords

Comments

3*n - 1 is an Eisenstein prime. - Vincenzo Librandi, Aug 08 2010
For all elements of this sequence there are no pairs (x,y) of positive integers such that a(n) = 3*x*y - x + y. - Pedro Caceres, Jan 28 2021

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

A003627 gives primes, A091177 gives prime index.
Cf. A010051, subsequence of A016789, A259645.

Programs

  • Haskell
    a087370 n = a087370_list !! (n-1)
    a087370_list = filter ((== 1) . a010051' . subtract 1 . (* 3)) [0..]
    -- Reinhard Zumkeller, Jul 03 2015

Formula

a(n)= A024893(n) + 1 = A088879(n) + 2.

Extensions

Corrected and extended by Ray Chandler, Oct 22 2003

A091177 Numbers m such that the m-th prime is of the form 3*k-1.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 13, 15, 16, 17, 20, 23, 24, 26, 28, 30, 32, 33, 35, 39, 40, 41, 43, 45, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 66, 69, 71, 72, 76, 77, 79, 81, 83, 86, 87, 89, 91, 92, 94, 96, 97, 98, 102, 103, 104, 107, 108, 109, 113, 116, 118, 119, 120, 123
Offset: 1

Views

Author

Ray Chandler, Dec 26 2003

Keywords

Comments

A003627 indexed by A000040.
The asymptotic density of this sequence is 1/2 (by Dirichlet's theorem). - Amiram Eldar, Feb 28 2021

Crossrefs

Cf. A003627 (primes of the form 3*k-1), A024893, A087370, A088879.
A133677 is another version.

Programs

  • Mathematica
    PrimePi/@Select[3Range[0,250]-1,PrimeQ]  (* Harvey P. Dale, Apr 26 2011 *)
    Select[Range[150],IntegerQ[(Prime[#]+1)/3]&] (* Harvey P. Dale, Dec 14 2021 *)
  • PARI
    a091177(limit)={my(m=0);forprime(p=2,prime(limit),m++;if(p%3==2,print1(m,", ")))};
    a091177(123) \\ Hugo Pfoertner, Aug 03 2021

Formula

a(n) = k such that A000040(k) = A003627(n).

A107303 Numbers k such that (3*k - 5) is prime.

Original entry on oeis.org

4, 6, 8, 12, 14, 16, 22, 24, 26, 28, 34, 36, 38, 44, 48, 52, 54, 56, 62, 66, 68, 72, 76, 78, 82, 92, 94, 96, 104, 106, 112, 114, 118, 124, 126, 128, 134, 138, 142, 146, 148, 154, 156, 164, 168, 176, 182, 184, 192, 194, 202, 204, 206, 208, 212, 216, 222, 226, 232
Offset: 1

Views

Author

Parthasarathy Nambi, May 20 2005

Keywords

Comments

3 and 5 are twin primes.

Examples

			If k=4, then 3*k - 5 = 7 (prime).
If k=28, then 3*k - 5 = 79 (prime).
		

Crossrefs

Cf. A088879.
Equals A153183(n) + 1; also A024892(n) + 2; also A034936(n) + 3;

Programs

A108110 Numbers n such that prime(k)*n+prime(k+1), for k=1,...,6 all are primes.

Original entry on oeis.org

284, 3074, 3494, 21698, 32138, 43874, 51794, 60674, 75494, 407348, 437438, 459794, 571478, 660878, 667358, 705464, 716624, 740774, 811028, 820154, 910664, 1059398, 1077998, 1122584, 1150748, 1210754, 1222898, 1265018, 1412174, 1461164, 1486574, 1585868, 1631438
Offset: 1

Views

Author

Zak Seidov, Jun 03 2005

Keywords

Comments

n == 0 (mod 2). n == 2 (mod 3). n == 3 or 4 (mod 5). - Jason Yuen, Sep 02 2024

Examples

			284 is OK because 2*284+3, 3*284+5, 5*284+7, 7*284+11, 11*284+13 and 13*284+17 all are primes.
		

Crossrefs

Cf. A067076 (k=1), A088879 (k=2), A111224 (k=3), A101123 (k=4), A102721 (k=5).
Cf. A108117 (k=1..7), A379427 (k=1..8).

Programs

  • Mathematica
    s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 6}]]=={True}, s=Append[s, n]], {n, 2, 1000000, 2}];s
  • PARI
    \\ See isok from A108117
    for(n=1,2*10^6,if(isok(n,6),print1(n", "))) \\ Jason Yuen, Sep 02 2024

Extensions

a(22)-a(33) from Jason Yuen, Sep 02 2024

A108117 Numbers n such that prime(k)*n+prime(k+1), for k=1,...,7 all are primes.

Original entry on oeis.org

3494, 60674, 75494, 1122584, 2136044, 2473934, 3367244, 5600384, 6629804, 6910784, 7554644, 8572904, 10079144, 11848094, 11892164, 12043214, 12167594, 12269234, 12507284, 12700154, 13459664, 13924544, 14495354, 15005954, 16890914, 17827094, 20642984, 25796054
Offset: 1

Views

Author

Zak Seidov, Jun 03 2005

Keywords

Comments

The only n, for which also 19*3494+23 is prime, is n=5600384. In principle, n == 4 (mod 10) can give primes of the form prime(k)*n+prime(k+1), for all k from 1 up to 41, while prime(42)*4+prime(43)=181*4+191 == 5 (mod 10) that is nonprime. It'd be very interesting to find at least one n such that prime(k)*n+prime(k+1), k=1,...,41 are all prime.
There are no values of n such that prime(k)*n+prime(k+1), k=1,...,9 are all prime. Proof: If n = 3*i then 2*(3*i)+3 = 3*(2*i+1) is not prime. If n = 3*i+1 then 5*(3*i+1)+7 = 3*(5*i+4) is not prime. If n = 3*i+2 then 23*(3*i+2)+29 = 3*(23*i+25) is not prime. - Jason Yuen, Sep 02 2024

Examples

			3494 is OK because 2*3494+3, 3*3494+5, 5*3494+7, 7*3494+11, 11*3494+13, 13*3494+17 and 17*3494+19 all are primes.
		

Crossrefs

Cf. A067076 (k=1), A088879 (k=2), A111224 (k=3), A101123 (k=4), A102721 (k=5), A108976 (k=7).
Cf. A108110 (k=1..6), A379427 (k=1..8).

Programs

  • Mathematica
    s={};Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 7}]]=={True}, s=Append[s, n]], {n, 4, 10000000, 10}];s
    Select[Range[9*10^6],AllTrue[Prime[Range[7]]#+Prime[Range[2,8]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 24 2018 *)
  • PARI
    isok(n,upto=7)=for(k=1,upto,if(!isprime(prime(k)*n+prime(k+1)),return(0)));1
    for(n=1,3*10^7,if(isok(n),print1(n", "))) \\ Jason Yuen, Sep 02 2024

Extensions

a(13)-a(28) from Jason Yuen, Sep 02 2024

A124853 Numbers k such that 5k + 3 and 3k + 5 are primes.

Original entry on oeis.org

0, 2, 4, 8, 14, 16, 22, 32, 34, 44, 56, 58, 62, 74, 76, 86, 88, 92, 104, 118, 128, 146, 148, 154, 172, 196, 212, 218, 224, 232, 238, 256, 274, 284, 286, 308, 316, 322, 338, 364, 382, 386, 394, 428, 454, 476, 478, 494, 518, 526, 532, 536, 538, 568, 632, 664, 674
Offset: 1

Views

Author

Zak Seidov, Nov 10 2006

Keywords

Comments

Intersection of A087505 and A088879.
All terms must be even. - Harvey P. Dale, Feb 12 2022

Crossrefs

Programs

  • Magma
    [n: n in [0..700] | IsPrime(5*n+3) and IsPrime(3*n+5)] // Vincenzo Librandi, Mar 26 2010
  • Mathematica
    Select[Range[0,700,2],AllTrue[{5#+3,3#+5},PrimeQ]&] (* Harvey P. Dale, Feb 12 2022 *)

A124854 Primes p=n/2 such that 5n+3 and 3n+5 are primes.

Original entry on oeis.org

2, 7, 11, 17, 29, 31, 37, 43, 59, 73, 109, 137, 191, 193, 197, 227, 239, 263, 269, 337, 367, 373, 401, 409, 449, 479, 499, 541, 557, 701, 743, 757, 823, 827, 857, 941, 983, 997, 1033, 1051, 1109, 1163, 1303, 1361, 1471
Offset: 1

Views

Author

Zak Seidov, Nov 10 2006

Keywords

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and isprime(10*t+3) and isprime(6*t+5), [2,seq(i,i=3..10^4,2)]); # Robert Israel, Jun 11 2018
  • Mathematica
    Select[Prime@ Range@ 250, AllTrue[{10 # + 3, 6 # + 5}, PrimeQ] &] (* Michael De Vlieger, Jun 11 2018 *)
  • PARI
    isok(n) = isprime(n) && isprime(10*n+3) && isprime(6*n+5); \\ Michel Marcus, Oct 11 2013
Showing 1-9 of 9 results.