A016789
a(n) = 3*n + 2.
Original entry on oeis.org
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 0
G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - _Michael Somos_, May 27 2019
- K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. Applegate and J. C. Lagarias, The 3x+1 semigroup, Journal of Number Theory, Vol. 177, Issue 1, March 2006, pp. 146-159; see also the arXiv version, arXiv:math/0411140 [math.NT], 2004-2005.
- H. Balakrishnan and N. Deo, Parallel algorithm for radiocoloring a graph, Congr. Numer. 160 (2003), 193-204.
- Allan Bickle, Extremal Decompositions for Nordhaus-Gaddum Theorems, Discrete Math, 346 7 (2023), 113392.
- L. Euler, Observatio de summis divisorum p. 9.
- L. Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, p. 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 937
- L. B. W. Jolley, Summation of Series, Dover, 1961, p. 16
- Tanya Khovanova, Recursive Sequences
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
- Fabian S. Reid, The Visual Pattern in the Collatz Conjecture and Proof of No Non-Trivial Cycles, arXiv:2105.07955 [math.GM], 2021.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Leo Tavares, Illustration: Capped Triangular Frames
- Wikipedia, Sprouts (game)
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf.
A002939,
A017041,
A017485,
A125202,
A017233,
A179896,
A017617,
A016957,
A008544 (partial products),
A032766,
A016777,
A124388,
A005351.
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
-
List([0..70],n->3*n+2); # Muniru A Asiru, Nov 02 2018
-
a016789 = (+ 2) . (* 3) -- Reinhard Zumkeller, Jul 05 2013
-
[3*n+2: n in [0..80]]; // Vincenzo Librandi, Apr 14 2015
-
seq(3*n+2, n = 0 .. 50); # Matt C. Anderson, May 18 2017
-
Range[2, 500, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
LinearRecurrence[{2,-1},{2,5},70] (* Harvey P. Dale, Aug 11 2021 *)
-
vector(100,n,3*n-1) \\ Derek Orr, Apr 13 2015
-
for n in range(0,100): print(3*n+2, end=', ') # Stefano Spezia, Nov 21 2018
A003627
Primes of the form 3n-1.
Original entry on oeis.org
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Eric Weisstein's World of Mathematics, Eisenstein Prime
- Kenneth S. Williams, 3 as a Ninth Power (mod p), Math. Scand., Vol 35 (1974), 309-317.
- Index to sequences related to decomposition of primes in quadratic fields
-
a003627 n = a003627_list !! (n-1)
a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
-- Reinhard Zumkeller, Oct 30 2011
-
[n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
-
t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
-
Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
-
is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013
A024893
Numbers k such that 3*k+2 is prime.
Original entry on oeis.org
0, 1, 3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 29, 33, 35, 37, 43, 45, 49, 55, 57, 59, 63, 65, 75, 77, 79, 83, 85, 87, 89, 93, 97, 103, 105, 115, 117, 119, 127, 129, 133, 139, 143, 147, 149, 153, 155, 159, 163, 167, 169, 173, 185, 187, 189, 195, 197, 199, 205, 213, 215, 217, 219, 225, 227
Offset: 1
A091177
Numbers m such that the m-th prime is of the form 3*k-1.
Original entry on oeis.org
1, 3, 5, 7, 9, 10, 13, 15, 16, 17, 20, 23, 24, 26, 28, 30, 32, 33, 35, 39, 40, 41, 43, 45, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 66, 69, 71, 72, 76, 77, 79, 81, 83, 86, 87, 89, 91, 92, 94, 96, 97, 98, 102, 103, 104, 107, 108, 109, 113, 116, 118, 119, 120, 123
Offset: 1
-
PrimePi/@Select[3Range[0,250]-1,PrimeQ] (* Harvey P. Dale, Apr 26 2011 *)
Select[Range[150],IntegerQ[(Prime[#]+1)/3]&] (* Harvey P. Dale, Dec 14 2021 *)
-
a091177(limit)={my(m=0);forprime(p=2,prime(limit),m++;if(p%3==2,print1(m,", ")))};
a091177(123) \\ Hugo Pfoertner, Aug 03 2021
A088879
Numbers n such that 3n + 5 is a prime.
Original entry on oeis.org
-1, 0, 2, 4, 6, 8, 12, 14, 16, 18, 22, 26, 28, 32, 34, 36, 42, 44, 48, 54, 56, 58, 62, 64, 74, 76, 78, 82, 84, 86, 88, 92, 96, 102, 104, 114, 116, 118, 126, 128, 132, 138, 142, 146, 148, 152, 154, 158, 162, 166, 168, 172, 184, 186, 188, 194, 196, 198, 204, 212, 214, 216, 218
Offset: 1
- M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
- Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
A259645
Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.
Original entry on oeis.org
1, 2, 4, 6, 10, 14, 16, 20, 24, 36, 66, 90, 94, 116, 120, 134, 150, 156, 160, 206, 240, 280, 340, 350, 384, 396, 430, 436, 470, 536, 634, 690, 700, 714, 780, 826, 864, 930, 946, 960, 1004, 1124, 1150, 1176, 1294, 1316, 1376, 1410, 1430, 1494, 1644, 1674
Offset: 1
. | (i, j, k) such that | corresponding
. | a(n) = A005574(i) | prime triples
. | | = A087370(j) | let m = a(n):
. n | a(n) | = A056561(k) | (m^2+1, 3*m-1, m^2+m+41)
. ---+------+---------------------+--------------------------
. 1 | 1 | (1, 1, 2) | (2, 2, 43)
. 2 | 2 | (2, 2, 3) | (5, 5, 47)
. 3 | 4 | (3, 3, 5) | (17, 11, 61)
. 4 | 6 | (4, 4, 7) | (37, 17, 83)
. 5 | 10 | (5, 6, 11) | (101, 29, 151)
. 6 | 14 | (6, 7, 13) | (197, 41, 251)
. 7 | 16 | (7, 8, 15) | (257, 47, 313)
. 8 | 20 | (8, 10, 21) | (401, 59, 461)
. 9 | 24 | (9, 11, 25) | (597, 71, 641)
. 10 | 36 | (11, 15, 37) | (1297, 107, 1373)
. 11 | 66 | (15, 24, 61) | (4357, 197, 4463)
. 12 | 90 | (18, 31, 79) | (8101, 269, 8231) .
-
import Data.List.Ordered (isect)
a259645 n = a259645_list !! (n-1)
a259645_list = a005574_list `isect` a087370_list `isect` a056561_list
-
Select[Range[100], AllTrue[{#^2 + 1, 3 # - 1, #^2 + # + 41}, PrimeQ] &] (* Robert Price, Apr 19 2025 *)
A255844
a(n) = 2*n^2 + 6.
Original entry on oeis.org
6, 8, 14, 24, 38, 56, 78, 104, 134, 168, 206, 248, 294, 344, 398, 456, 518, 584, 654, 728, 806, 888, 974, 1064, 1158, 1256, 1358, 1464, 1574, 1688, 1806, 1928, 2054, 2184, 2318, 2456, 2598, 2744, 2894, 3048, 3206, 3368, 3534, 3704, 3878, 4056, 4238, 4424, 4614
Offset: 0
Cf.
A152811: nonnegative numbers of the form 2*m^2-6.
Cf. similar sequences listed in
A255843.
-
[2*n^2+6: n in [0..50]];
-
Table[2 n^2 + 6, {n, 0, 50}]
-
vector(50, n, n--; 2*n^2+6)
-
[2*n^2+6 for n in (0..50)]
Original entry on oeis.org
1, 2, 6, 10, 14, 18, 30, 34, 38, 42, 46, 50, 58, 66, 78, 86, 90, 94, 98, 106, 118, 130, 134, 150, 154, 170, 174, 186, 190, 198, 206, 214, 218, 226, 234, 254, 258, 266, 270, 274, 286, 294, 310, 314, 318, 326, 338, 350, 354, 366, 370, 394, 398, 406, 410, 426
Offset: 1
-
Select[Range[100], PrimeNu[#] == PrimeNu[#*(3*# - 1)/2] &] (* G. C. Greubel, Apr 23 2017 *)
-
select(k->omega(k)==omega(k*(3*k-1)/2), vector(500, k, k))
Original entry on oeis.org
1, 2, 6, 10, 14, 18, 30, 34, 38, 46, 50, 58, 66, 78, 86, 90, 94, 98, 106, 118, 130, 134, 150, 154, 170, 174, 186, 190, 198, 206, 214, 218, 226, 234, 254, 258, 266, 270, 274, 286, 294, 310, 314, 318, 326, 338, 350, 354, 366, 370, 394, 398, 406, 410, 426, 430
Offset: 1
-
Select[Range[500],DivisorSigma[0,#]==DivisorSigma[0,(#(3#-1))/2]&] (* Harvey P. Dale, Nov 12 2017 *)
-
select(k->numdiv(k)==numdiv(k*(3*k-1)/2), vector(500, k, k))
A246907
Numbers n such that sigma(n + sigma(n)) = 3n.
Original entry on oeis.org
1, 2, 4, 8, 16, 64, 128, 2048, 262144, 17179869184, 274877906944, 8796093022208, 36028797018963968
Offset: 1
Number 16 is in sequence because sigma(16 + sigma(16)) = sigma(16 + 31) = sigma(47) = 48 = 3 * 16.
-
[n:n in[1..10000000] | SumOfDivisors(n+SumOfDivisors(n))eq 3*n]
-
Select[Range[300000], DivisorSigma[1, # + DivisorSigma[1, #]] == 3 # &] (* Harvey P. Dale, Jul 19 2015 *)
-
for(n=1,10^7,if(sigma(n+sigma(n))==3*n,print1(n,", "))) \\ Derek Orr, Sep 07 2014
Showing 1-10 of 11 results.
Comments