cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A016789 a(n) = 3*n + 2.

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 0

Views

Author

Keywords

Comments

Except for 1, n such that Sum_{k=1..n} (k mod 3)*binomial(n,k) is a power of 2. - Benoit Cloitre, Oct 17 2002
The sequence 0,0,2,0,0,5,0,0,8,... has a(n) = n*(1 + cos(2*Pi*n/3 + Pi/3) - sqrt(3)*sin(2*Pi*n + Pi/3))/3 and o.g.f. x^2(2+x^3)/(1-x^3)^2. - Paul Barry, Jan 28 2004 [Artur Jasinski, Dec 11 2007, remarks that this should read (3*n + 2)*(1 + cos(2*Pi*(3*n + 2)/3 + Pi/3) - sqrt(3)*sin(2*Pi*(3*n + 2)/3 + Pi/3))/3.]
Except for 2, exponents e such that x^e + x + 1 is reducible. - N. J. A. Sloane, Jul 19 2005
The trajectory of these numbers under iteration of sum of cubes of digits eventually turns out to be 371 or 407 (47 is the first of the second kind). - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009
Union of A165334 and A165335. - Reinhard Zumkeller, Sep 17 2009
a(n) is the set of numbers congruent to {2,5,8} mod 9. - Gary Detlefs, Mar 07 2010
It appears that a(n) is the set of all values of y such that y^3 = k*n + 2 for integer k. - Gary Detlefs, Mar 08 2010
These numbers do not occur in A000217 (triangular numbers). - Arkadiusz Wesolowski, Jan 08 2012
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
Also indices of even Bell numbers (A000110). - Enrique Pérez Herrero, Sep 10 2013
Central terms of the triangle A108872. - Reinhard Zumkeller, Oct 01 2014
A092942(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n-1), n >= 1, is also the complex dimension of the manifold E(S), the set of all second-order irreducible Fuchsian differential equations defined on P^1 = C U {oo}, having singular points at most in S = {a_1, ..., a_n, a_{n+1} = oo}, a subset of P^1. See the Iwasaki et al. reference, Proposition 2.1.3., p. 149. - Wolfdieter Lang, Apr 22 2016
Except for 2, exponents for which 1 + x^(n-1) + x^n is reducible. - Ron Knott, Sep 16 2016
The reciprocal sum of 8 distinct items from this sequence can be made equal to 1, with these terms: 2, 5, 8, 14, 20, 35, 41, 1640. - Jinyuan Wang, Nov 16 2018
There are no positive integers x, y, z such that 1/a(x) = 1/a(y) + 1/a(z). - Jinyuan Wang, Dec 31 2018
As a set of positive integers, it is the set sum S + S where S is the set of numbers in A016777. - Michael Somos, May 27 2019
Interleaving of A016933 and A016969. - Leo Tavares, Nov 16 2021
Prepended with {1}, these are the denominators of the elements of the 3x+1 semigroup, the numerators being A005408 prepended with {2}. See Applegate and Lagarias link for more information. - Paolo Xausa, Nov 20 2021
This is also the maximum number of moves starting with n + 1 dots in the game of Sprouts. - Douglas Boffey, Aug 01 2022 [See the Wikipedia link. - Wolfdieter Lang, Sep 29 2022]
a(n-2) is the maximum sum of the span (or L(2,1)-labeling number) of a graph of order n and its complement. The extremal graphs are stars and their complements. For example, K_{1,2} has span 3, and K_2 has span 2. Thus a(3-1) = 5. - Allan Bickle, Apr 20 2023

Examples

			G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - _Michael Somos_, May 27 2019
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269

Crossrefs

First differences of A005449.
Cf. A087370.
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (2+x)/(1-x)^2.
a(n) = 3 + a(n-1).
a(n) = 1 + A016777(n).
a(n) = A124388(n)/9.
a(n) = A125199(n+1,1). - Reinhard Zumkeller, Nov 24 2006
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) - log(2)). - Benoit Cloitre, Apr 05 2002
1/2 - 1/5 + 1/8 - 1/11 + ... = (1/3)*(Pi/sqrt(3) - log 2). [Jolley] - Gary W. Adamson, Dec 16 2006
Sum_{n>=0} 1/(a(2*n)*a(2*n+1)) = (Pi/sqrt(3) - log 2)/9 = 0.12451569... (see A196548). [Jolley p. 48 eq (263)]
a(n) = 2*a(n-1) - a(n-2); a(0)=2, a(1)=5. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) + 1 with a(0)=2. - Vincenzo Librandi, Aug 25 2010
Conjecture: a(n) = n XOR A005351(n+1) XOR A005352(n+1). - Gilian Breysens, Jul 21 2017
E.g.f.: (2 + 3*x)*exp(x). - G. C. Greubel, Nov 02 2018
a(n) = A005449(n+1) - A005449(n). - Jinyuan Wang, Feb 03 2019
a(n) = -A016777(-1-n) for all n in Z. - Michael Somos, May 27 2019
a(n) = A007310(n+1) + (1 - n mod 2). - Walt Rorie-Baety, Sep 13 2021
a(n) = A000096(n+1) - A000217(n-1). See Capped Triangular Frames illustration. - Leo Tavares, Oct 05 2021

A003627 Primes of the form 3n-1.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p such that 1+x+x^2 is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p dividing sum(k=0,p,C(2k,k)) -1 = A006134(p)-1. - Benoit Cloitre, Feb 08 2003
A039701(A049084(a(n))) = 2; A134323(A049084(a(n))) = -1. - Reinhard Zumkeller, Oct 21 2007
The set of primes of the form 3n - 1 is a superset of the set of lesser of twin primes larger than three (A001359). - Paul Muljadi, Jun 05 2008
Primes of this form do not occur in or as divisors of {n^2+n+1}. See A002383 (n^2+n+1 = prime), A162471 (prime divisors of n^2+n+1 not in A002383), and A002061 (numbers of the form n^2-n+1). - Daniel Tisdale, Jul 04 2009
Or, primes not in A007645. A003627 UNION A007645 = A000040. Also, primes of the form 6*k-5/2-+3/2. - Juri-Stepan Gerasimov, Jan 28 2010
Except for first term "2", all these prime numbers are of the form: 6*n-1. - Vladimir Joseph Stephan Orlovsky, Jul 13 2011
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
For n>1: Numbers k such that (k-4)! mod k =(-1)^(floor(k/3)+1)*floor((k+1)/6), k>4. - Gary Detlefs, Jan 02 2012
Binomial(a(n),3)/a(n)= (3*A024893(n)^2+A024893(n))/2, n>1. - Gary Detlefs, May 06 2012
For every prime p in this sequence, 3 is a 9th power mod p. See Williams link. - Michel Marcus, Nov 12 2017
2 adjoined to A007528. - David A. Corneth, Nov 12 2017
For n >= 2 there exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes of form 3n+1 give A002476.
These are the primes arising in A024893, A087370, A088879. A091177 gives prime index.
Subsequence of A034020.

Programs

  • Haskell
    a003627 n = a003627_list !! (n-1)
    a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Magma
    [n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
  • Mathematica
    Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
    Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n>=1} 1/a(n)^2 = 0.30792... = A085548 - 1/9 - A175644.
Sum_{n>=1} 1/a(n)^3 = 0.134125... = A085541 - 1/27 - A175645. (End)

A024893 Numbers k such that 3*k+2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 29, 33, 35, 37, 43, 45, 49, 55, 57, 59, 63, 65, 75, 77, 79, 83, 85, 87, 89, 93, 97, 103, 105, 115, 117, 119, 127, 129, 133, 139, 143, 147, 149, 153, 155, 159, 163, 167, 169, 173, 185, 187, 189, 195, 197, 199, 205, 213, 215, 217, 219, 225, 227
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003627 (associated primes), A091177 (gives prime index).

Programs

Formula

a(n) = A087370(n)-1 = A088879(n)+1.

A091177 Numbers m such that the m-th prime is of the form 3*k-1.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 13, 15, 16, 17, 20, 23, 24, 26, 28, 30, 32, 33, 35, 39, 40, 41, 43, 45, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 66, 69, 71, 72, 76, 77, 79, 81, 83, 86, 87, 89, 91, 92, 94, 96, 97, 98, 102, 103, 104, 107, 108, 109, 113, 116, 118, 119, 120, 123
Offset: 1

Views

Author

Ray Chandler, Dec 26 2003

Keywords

Comments

A003627 indexed by A000040.
The asymptotic density of this sequence is 1/2 (by Dirichlet's theorem). - Amiram Eldar, Feb 28 2021

Crossrefs

Cf. A003627 (primes of the form 3*k-1), A024893, A087370, A088879.
A133677 is another version.

Programs

  • Mathematica
    PrimePi/@Select[3Range[0,250]-1,PrimeQ]  (* Harvey P. Dale, Apr 26 2011 *)
    Select[Range[150],IntegerQ[(Prime[#]+1)/3]&] (* Harvey P. Dale, Dec 14 2021 *)
  • PARI
    a091177(limit)={my(m=0);forprime(p=2,prime(limit),m++;if(p%3==2,print1(m,", ")))};
    a091177(123) \\ Hugo Pfoertner, Aug 03 2021

Formula

a(n) = k such that A000040(k) = A003627(n).

A088879 Numbers n such that 3n + 5 is a prime.

Original entry on oeis.org

-1, 0, 2, 4, 6, 8, 12, 14, 16, 18, 22, 26, 28, 32, 34, 36, 42, 44, 48, 54, 56, 58, 62, 64, 74, 76, 78, 82, 84, 86, 88, 92, 96, 102, 104, 114, 116, 118, 126, 128, 132, 138, 142, 146, 148, 152, 154, 158, 162, 166, 168, 172, 184, 186, 188, 194, 196, 198, 204, 212, 214, 216, 218
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 27 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

A003627 gives primes, A091177 gives prime index.
Cf. A016789.

Programs

Formula

a(n) = A024893(n) - 1 = A087370(n) - 2.

Extensions

Edited and extended by Ray Chandler, Dec 26 2003

A259645 Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 16, 20, 24, 36, 66, 90, 94, 116, 120, 134, 150, 156, 160, 206, 240, 280, 340, 350, 384, 396, 430, 436, 470, 536, 634, 690, 700, 714, 780, 826, 864, 930, 946, 960, 1004, 1124, 1150, 1176, 1294, 1316, 1376, 1410, 1430, 1494, 1644, 1674
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2015

Keywords

Comments

This sequence is infinite if the generalized Dickson's conjecture holds.

Examples

			.            | (i, j, k) such that |        corresponding
.            | a(n) = A005574(i)   |        prime triples
.     |      |      = A087370(j)   |        let m = a(n):
.   n | a(n) |      = A056561(k)   |  (m^2+1, 3*m-1, m^2+m+41)
.  ---+------+---------------------+--------------------------
.   1 |    1 |     (1,  1,  2)     |        (2,   2,   43)
.   2 |    2 |     (2,  2,  3)     |        (5,   5,   47)
.   3 |    4 |     (3,  3,  5)     |       (17,  11,   61)
.   4 |    6 |     (4,  4,  7)     |       (37,  17,   83)
.   5 |   10 |     (5,  6, 11)     |      (101,  29,  151)
.   6 |   14 |     (6,  7, 13)     |      (197,  41,  251)
.   7 |   16 |     (7,  8, 15)     |      (257,  47,  313)
.   8 |   20 |     (8, 10, 21)     |      (401,  59,  461)
.   9 |   24 |     (9, 11, 25)     |      (597,  71,  641)
.  10 |   36 |    (11, 15, 37)     |     (1297, 107, 1373)
.  11 |   66 |    (15, 24, 61)     |     (4357, 197, 4463)
.  12 |   90 |    (18, 31, 79)     |     (8101, 269, 8231)  .
		

Crossrefs

Intersection of A005574, A087370 and A056561.

Programs

  • Haskell
    import Data.List.Ordered (isect)
    a259645 n = a259645_list !! (n-1)
    a259645_list = a005574_list `isect` a087370_list `isect` a056561_list
  • Mathematica
    Select[Range[100], AllTrue[{#^2 + 1, 3 # - 1, #^2 + # + 41}, PrimeQ] &] (* Robert Price, Apr 19 2025 *)

A255844 a(n) = 2*n^2 + 6.

Original entry on oeis.org

6, 8, 14, 24, 38, 56, 78, 104, 134, 168, 206, 248, 294, 344, 398, 456, 518, 584, 654, 728, 806, 888, 974, 1064, 1158, 1256, 1358, 1464, 1574, 1688, 1806, 1928, 2054, 2184, 2318, 2456, 2598, 2744, 2894, 3048, 3206, 3368, 3534, 3704, 3878, 4056, 4238, 4424, 4614
Offset: 0

Views

Author

Avi Friedlich, Mar 08 2015

Keywords

Comments

This is the case k=3 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2. Also, it is noted that a(n)*n = (n + 1)^3 + (n - 1)^3.
Equivalently, numbers m such that 2*m-12 is a square.
For n = 0..16, 3*a(n)-1 is prime (see A087370); for n = 0..12, 3*a(n)-5 is prime (see A107303).

Crossrefs

Cf. A016825 (first differences), A087370, A107303, A114949, A117950.
Cf. A152811: nonnegative numbers of the form 2*m^2-6.
Subsequence of A000378.
Cf. similar sequences listed in A255843.

Programs

  • Magma
    [2*n^2+6: n in [0..50]];
  • Mathematica
    Table[2 n^2 + 6, {n, 0, 50}]
  • PARI
    vector(50, n, n--; 2*n^2+6)
    
  • Sage
    [2*n^2+6 for n in (0..50)]
    

Formula

G.f.: 2*(3-5*x+4*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A117950(n).
From Amiram Eldar, Mar 28 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(3)*Pi*coth(sqrt(3)*Pi))/12.
Sum_{n>=0} (-1)^n/a(n) = (1 + (sqrt(3)*Pi)*cosech(sqrt(3)*Pi))/12. (End)
E.g.f.: 2*exp(x)*(3 + x + x^2). - Elmo R. Oliveira, Jan 25 2025

Extensions

Corrected and extended by Bruno Berselli, Mar 11 2015

A281702 Numbers k such that A001221(k) = A001221(A000326(k)).

Original entry on oeis.org

1, 2, 6, 10, 14, 18, 30, 34, 38, 42, 46, 50, 58, 66, 78, 86, 90, 94, 98, 106, 118, 130, 134, 150, 154, 170, 174, 186, 190, 198, 206, 214, 218, 226, 234, 254, 258, 266, 270, 274, 286, 294, 310, 314, 318, 326, 338, 350, 354, 366, 370, 394, 398, 406, 410, 426
Offset: 1

Views

Author

Colin Barker, Jan 28 2017

Keywords

Comments

Numbers k such that the number of distinct prime divisors of k is equal to the number of distinct prime divisors of the pentagonal number k*(3*k-1)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[100], PrimeNu[#] == PrimeNu[#*(3*# - 1)/2] &] (* G. C. Greubel, Apr 23 2017 *)
  • PARI
    select(k->omega(k)==omega(k*(3*k-1)/2), vector(500, k, k))

A281703 Numbers k such that A000005(k) = A000005(A000326(k)).

Original entry on oeis.org

1, 2, 6, 10, 14, 18, 30, 34, 38, 46, 50, 58, 66, 78, 86, 90, 94, 98, 106, 118, 130, 134, 150, 154, 170, 174, 186, 190, 198, 206, 214, 218, 226, 234, 254, 258, 266, 270, 274, 286, 294, 310, 314, 318, 326, 338, 350, 354, 366, 370, 394, 398, 406, 410, 426, 430
Offset: 1

Views

Author

Colin Barker, Jan 28 2017

Keywords

Comments

Numbers k such that the number of divisors of k is equal to the number of divisors of the pentagonal number k*(3*k-1)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[500],DivisorSigma[0,#]==DivisorSigma[0,(#(3#-1))/2]&] (* Harvey P. Dale, Nov 12 2017 *)
  • PARI
    select(k->numdiv(k)==numdiv(k*(3*k-1)/2), vector(500, k, k))

A246907 Numbers n such that sigma(n + sigma(n)) = 3n.

Original entry on oeis.org

1, 2, 4, 8, 16, 64, 128, 2048, 262144, 17179869184, 274877906944, 8796093022208, 36028797018963968
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2014

Keywords

Comments

Conjecture: for n >= 2; numbers n of the form 2^k such that 3*(2^k) - 1 is prime. The next terms: 18446744073709551616, 75557863725914323419136, 19807040628566084398385987584, … Sequence of numbers k: 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, … Subsequence of A087370 (numbers n such that 3n - 1 is a prime).
a(14) > 5*10^17. - Hiroaki Yamanouchi, Sep 11 2015

Examples

			Number 16 is in sequence because sigma(16 + sigma(16)) = sigma(16 + 31) = sigma(47) = 48 = 3 * 16.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10000000] | SumOfDivisors(n+SumOfDivisors(n))eq 3*n]
    
  • Mathematica
    Select[Range[300000], DivisorSigma[1, # + DivisorSigma[1, #]] == 3 # &] (* Harvey P. Dale, Jul 19 2015 *)
  • PARI
    for(n=1,10^7,if(sigma(n+sigma(n))==3*n,print1(n,", "))) \\ Derek Orr, Sep 07 2014

Extensions

a(10)-a(13) from Hiroaki Yamanouchi, Sep 11 2015
Showing 1-10 of 11 results. Next