cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A173178 Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.

Original entry on oeis.org

1, 4, 7, 10, 13, 19, 22, 25, 28, 34, 40, 43, 49, 52, 55, 64, 67, 73, 82, 85, 88, 94, 97, 112, 115, 118, 124, 127, 130, 133, 139, 145, 154, 157, 172, 175, 178, 190, 193, 199, 208, 214, 220, 223, 229, 232, 238, 244, 250, 253, 259, 277, 280, 283, 292, 295, 298, 307, 319
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 1 + 3 OR 3* 1 + 2 = 5;
2* 4 + 3 OR 3* 3 + 2 = 11;
2* 7 + 3 OR 3* 5 + 2 = 17;
2*10 + 3 OR 3* 7 + 2 = 23;
2*13 + 3 OR 3* 9 + 2 = 29;
2*19 + 3 OR 3*13 + 2 = 41;
2*22 + 3 OR 3*15 + 2 = 47;
2*25 + 3 OR 3*17 + 2 = 53;
2*28 + 3 OR 3*19 + 2 = 59.
A024893 Numbers k such that 3k+2 is prime.
A007528 Primes of the form 6k-1.
A024898 Positive integers k such that 6k-1 is prime.
1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* Amiram Eldar, Jul 30 2024 *)

Formula

a(n) = 3*A059325(n) + 1. - Amiram Eldar, Jul 30 2024

Extensions

Data corrected and extended by Amiram Eldar, Jul 30 2024

A003627 Primes of the form 3n-1.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p such that 1+x+x^2 is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p dividing sum(k=0,p,C(2k,k)) -1 = A006134(p)-1. - Benoit Cloitre, Feb 08 2003
A039701(A049084(a(n))) = 2; A134323(A049084(a(n))) = -1. - Reinhard Zumkeller, Oct 21 2007
The set of primes of the form 3n - 1 is a superset of the set of lesser of twin primes larger than three (A001359). - Paul Muljadi, Jun 05 2008
Primes of this form do not occur in or as divisors of {n^2+n+1}. See A002383 (n^2+n+1 = prime), A162471 (prime divisors of n^2+n+1 not in A002383), and A002061 (numbers of the form n^2-n+1). - Daniel Tisdale, Jul 04 2009
Or, primes not in A007645. A003627 UNION A007645 = A000040. Also, primes of the form 6*k-5/2-+3/2. - Juri-Stepan Gerasimov, Jan 28 2010
Except for first term "2", all these prime numbers are of the form: 6*n-1. - Vladimir Joseph Stephan Orlovsky, Jul 13 2011
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
For n>1: Numbers k such that (k-4)! mod k =(-1)^(floor(k/3)+1)*floor((k+1)/6), k>4. - Gary Detlefs, Jan 02 2012
Binomial(a(n),3)/a(n)= (3*A024893(n)^2+A024893(n))/2, n>1. - Gary Detlefs, May 06 2012
For every prime p in this sequence, 3 is a 9th power mod p. See Williams link. - Michel Marcus, Nov 12 2017
2 adjoined to A007528. - David A. Corneth, Nov 12 2017
For n >= 2 there exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes of form 3n+1 give A002476.
These are the primes arising in A024893, A087370, A088879. A091177 gives prime index.
Subsequence of A034020.

Programs

  • Haskell
    a003627 n = a003627_list !! (n-1)
    a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Magma
    [n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
  • Mathematica
    Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
    Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n>=1} 1/a(n)^2 = 0.30792... = A085548 - 1/9 - A175644.
Sum_{n>=1} 1/a(n)^3 = 0.134125... = A085541 - 1/27 - A175645. (End)

A087370 Numbers n such that 3n - 1 is a prime.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 18, 20, 24, 28, 30, 34, 36, 38, 44, 46, 50, 56, 58, 60, 64, 66, 76, 78, 80, 84, 86, 88, 90, 94, 98, 104, 106, 116, 118, 120, 128, 130, 134, 140, 144, 148, 150, 154, 156, 160, 164, 168, 170, 174, 186, 188, 190, 196, 198, 200, 206, 214, 216
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 21 2003

Keywords

Comments

3*n - 1 is an Eisenstein prime. - Vincenzo Librandi, Aug 08 2010
For all elements of this sequence there are no pairs (x,y) of positive integers such that a(n) = 3*x*y - x + y. - Pedro Caceres, Jan 28 2021

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

A003627 gives primes, A091177 gives prime index.
Cf. A010051, subsequence of A016789, A259645.

Programs

  • Haskell
    a087370 n = a087370_list !! (n-1)
    a087370_list = filter ((== 1) . a010051' . subtract 1 . (* 3)) [0..]
    -- Reinhard Zumkeller, Jul 03 2015

Formula

a(n)= A024893(n) + 1 = A088879(n) + 2.

Extensions

Corrected and extended by Ray Chandler, Oct 22 2003

A112774 Semiprimes of the form 6n+4.

Original entry on oeis.org

4, 10, 22, 34, 46, 58, 82, 94, 106, 118, 142, 166, 178, 202, 214, 226, 262, 274, 298, 334, 346, 358, 382, 394, 454, 466, 478, 502, 514, 526, 538, 562, 586, 622, 634, 694, 706, 718, 766, 778, 802, 838, 862, 886, 898, 922, 934, 958, 982, 1006, 1018, 1042, 1114
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Oct 15 2005

Keywords

Comments

Programs

  • Magma
    IsSemiprime:=func; [s: n in [0..200] | IsSemiprime(s) where s is 6*n + 4]; // Vincenzo Librandi, Sep 22 2012
    
  • Mathematica
    Select[6 Range[0, 200] + 4, PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)
  • Python
    from sympy import factorint
    def semiprime(n): f = factorint(n); return sum(f[p] for p in f) == 2
    print(list(filter(semiprime, range(4, 1115, 6)))) # Michael S. Branicky, Apr 10 2021

Formula

a(n) = 2 * A003627(n) = 6 * A024893(n) + 4.

A091177 Numbers m such that the m-th prime is of the form 3*k-1.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 13, 15, 16, 17, 20, 23, 24, 26, 28, 30, 32, 33, 35, 39, 40, 41, 43, 45, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 66, 69, 71, 72, 76, 77, 79, 81, 83, 86, 87, 89, 91, 92, 94, 96, 97, 98, 102, 103, 104, 107, 108, 109, 113, 116, 118, 119, 120, 123
Offset: 1

Views

Author

Ray Chandler, Dec 26 2003

Keywords

Comments

A003627 indexed by A000040.
The asymptotic density of this sequence is 1/2 (by Dirichlet's theorem). - Amiram Eldar, Feb 28 2021

Crossrefs

Cf. A003627 (primes of the form 3*k-1), A024893, A087370, A088879.
A133677 is another version.

Programs

  • Mathematica
    PrimePi/@Select[3Range[0,250]-1,PrimeQ]  (* Harvey P. Dale, Apr 26 2011 *)
    Select[Range[150],IntegerQ[(Prime[#]+1)/3]&] (* Harvey P. Dale, Dec 14 2021 *)
  • PARI
    a091177(limit)={my(m=0);forprime(p=2,prime(limit),m++;if(p%3==2,print1(m,", ")))};
    a091177(123) \\ Hugo Pfoertner, Aug 03 2021

Formula

a(n) = k such that A000040(k) = A003627(n).

A088879 Numbers n such that 3n + 5 is a prime.

Original entry on oeis.org

-1, 0, 2, 4, 6, 8, 12, 14, 16, 18, 22, 26, 28, 32, 34, 36, 42, 44, 48, 54, 56, 58, 62, 64, 74, 76, 78, 82, 84, 86, 88, 92, 96, 102, 104, 114, 116, 118, 126, 128, 132, 138, 142, 146, 148, 152, 154, 158, 162, 166, 168, 172, 184, 186, 188, 194, 196, 198, 204, 212, 214, 216, 218
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 27 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

A003627 gives primes, A091177 gives prime index.
Cf. A016789.

Programs

Formula

a(n) = A024893(n) - 1 = A087370(n) - 2.

Extensions

Edited and extended by Ray Chandler, Dec 26 2003

A153170 Numbers k such that 3*k + 2 is not prime.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2008

Keywords

Comments

Contains the positive even numbers (A005843) and the odd numbers of the form 2*A059324(.) + 1. - R. J. Mathar, Nov 27 2010
Numbers k such that (3*k)!/(3*k + 2) is an integer. - Peter Bala, Jan 25 2017

Examples

			Distribution of the odd terms in the following triangular array:
  *;
  *,   *;
  *,  11,   *;
  *,   *,   *,   *;
  *,   *,  25,   *,   *;
  *,  21,   *,   *,  47,   *;
  *,   *,   *,   *,   *,   *,   *;
  *,   *,  39,   *,   *,  73,   *,   *;
  *,  31,   *,   *,  69,   *,   *, 107,   *;
  *,   *,   *,   *,   *,   *,   *,   *,   *,   *;
  *,   *,  53,   *,   *,  99,   *,   *, 145,   *,   *;
  *,  41,   *,   *,  91,   *,   *, 141,   *,   *, 191,   *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 1)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [1..110] | not IsPrime(3*n + 2)]; // Vincenzo Librandi, Oct 11 2012
  • Maple
    for n from 0 to 100 do
    if irem(factorial(3*n), 3*n+2) = 0 then print(n); end if;
    end do: # Peter Bala, Jan 25 2017
  • Mathematica
    Select[Range[1, 200], !PrimeQ[3*# + 2] &] (* Vincenzo Librandi, Oct 11 2012 *)
  • PARI
    for(n=1,200,if(!isprime(3*n+2), print1(n,", "))) \\  Joerg Arndt, Nov 27 2010
    

Extensions

Edited by N. J. A. Sloane, Jun 23 2010

A157834 Numbers n such that 3n-2 and 3n+2 are both prime.

Original entry on oeis.org

3, 5, 7, 13, 15, 23, 27, 33, 35, 37, 43, 55, 65, 75, 77, 93, 103, 105, 117, 127, 133, 147, 153, 155, 163, 167, 205, 215, 225, 247, 253, 257, 275, 285, 287, 293, 295, 303, 313, 323, 337, 363, 365, 405, 427, 433, 435, 475, 477, 483, 495, 497, 517
Offset: 1

Views

Author

Kyle D. Balliet, Mar 07 2009

Keywords

Comments

Barycenter of cousin primes (A029708; see also A029710, A023200, A046132), divided by 3. When p>3 and p+4 both are prime, then p = 1 (mod 6) and p+2 = 3 (mod 6). - M. F. Hasler, Jan 14 2013

Examples

			15*3 +/- 2 = 43,47 (both prime).
		

Crossrefs

Intersection of A024893 and A153183.

Programs

  • Magma
    [n: n in [1..1000]|IsPrime(3*n-2)and IsPrime(3*n+2)] // Vincenzo Librandi, Dec 13 2010
  • Maple
    select(t -> isprime(3*t+2) and isprime(3*t-2), [seq(t,t=3..1000,2)]); # Robert Israel, May 28 2017
  • Mathematica
    Select[Range[600],AllTrue[3#+{2,-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 03 2019 *)

Formula

Intersection of A024893 and A153183.
a(n) = A029708(n)/3. - Zak Seidov, Aug 07 2009
a(n) = A056956(n)*2+1 = (A029710(n)+2)/3 = (A023200(n+1)+2)/3. - M. F. Hasler, Jan 14 2013

A228121 Numbers n such that 3n - 4 is prime.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 15, 17, 19, 21, 25, 29, 31, 35, 37, 39, 45, 47, 51, 57, 59, 61, 65, 67, 77, 79, 81, 85, 87, 89, 91, 95, 99, 105, 107, 117, 119, 121, 129, 131, 135, 141, 145, 149, 151, 155, 157, 161, 165, 169, 171, 175, 187, 189, 191, 197, 199, 201, 207, 215, 217, 219, 221, 227, 229
Offset: 1

Views

Author

Irina Gerasimova, Aug 11 2013

Keywords

Comments

Primes in a(n): 2, 3, 5, 7, 11, 17, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89, 107, 131, 149, 151, 157, 191, 197, 199, 227, 229, 241, 271, 277, 281,...

Examples

			For n = 15, 3*15 - 4 = 41 is prime.
		

Crossrefs

Programs

Formula

a(n) = A024893(n) + 2. - Michael B. Porter, Aug 11 2013

A126955 Numbers n such that 2n+1, 3n+2 and 4n+3 are primes.

Original entry on oeis.org

1, 5, 65, 89, 119, 215, 455, 755, 779, 965, 1175, 1349, 1409, 1469, 1679, 1745, 1769, 1889, 1955, 2009, 2105, 2435, 2519, 2525, 2585, 2639, 4685, 5045, 5165, 5735, 5915, 5969, 6725, 7415, 7469, 7895, 8045, 9065, 9365, 9449, 9659, 9779, 9959, 10379
Offset: 1

Views

Author

J. M. Bergot, Mar 19 2007

Keywords

Examples

			Take n = 89. Then 2*89 + 1 = 179, 3*89 + 2 = 269 and 4*89 + 3 = 359 are primes.
		

Crossrefs

Intersection of A005097, A024893, A095278. Cf. A126956.

Programs

  • Mathematica
    Select[Range[10500], PrimeQ[2# + 1] && PrimeQ[3# + 2] && PrimeQ[4# + 3] &] (* Ray Chandler, Mar 20 2007 *)
    Select[Range[11000],AllTrue[{2#+1,3#+2,4#+3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 23 2017 *)

Extensions

Extended by Ray Chandler, Robert G. Wilson v and Stuart Clary, Mar 20 2007
Showing 1-10 of 15 results. Next