A173178
Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.
Original entry on oeis.org
1, 4, 7, 10, 13, 19, 22, 25, 28, 34, 40, 43, 49, 52, 55, 64, 67, 73, 82, 85, 88, 94, 97, 112, 115, 118, 124, 127, 130, 133, 139, 145, 154, 157, 172, 175, 178, 190, 193, 199, 208, 214, 220, 223, 229, 232, 238, 244, 250, 253, 259, 277, 280, 283, 292, 295, 298, 307, 319
Offset: 1
-
Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* Amiram Eldar, Jul 30 2024 *)
A003627
Primes of the form 3n-1.
Original entry on oeis.org
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Eric Weisstein's World of Mathematics, Eisenstein Prime
- Kenneth S. Williams, 3 as a Ninth Power (mod p), Math. Scand., Vol 35 (1974), 309-317.
- Index to sequences related to decomposition of primes in quadratic fields
-
a003627 n = a003627_list !! (n-1)
a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
-- Reinhard Zumkeller, Oct 30 2011
-
[n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
-
t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
-
Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
-
is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013
A087370
Numbers n such that 3n - 1 is a prime.
Original entry on oeis.org
1, 2, 4, 6, 8, 10, 14, 16, 18, 20, 24, 28, 30, 34, 36, 38, 44, 46, 50, 56, 58, 60, 64, 66, 76, 78, 80, 84, 86, 88, 90, 94, 98, 104, 106, 116, 118, 120, 128, 130, 134, 140, 144, 148, 150, 154, 156, 160, 164, 168, 170, 174, 186, 188, 190, 196, 198, 200, 206, 214, 216
Offset: 1
- M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
- Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
A112774
Semiprimes of the form 6n+4.
Original entry on oeis.org
4, 10, 22, 34, 46, 58, 82, 94, 106, 118, 142, 166, 178, 202, 214, 226, 262, 274, 298, 334, 346, 358, 382, 394, 454, 466, 478, 502, 514, 526, 538, 562, 586, 622, 634, 694, 706, 718, 766, 778, 802, 838, 862, 886, 898, 922, 934, 958, 982, 1006, 1018, 1042, 1114
Offset: 1
-
IsSemiprime:=func; [s: n in [0..200] | IsSemiprime(s) where s is 6*n + 4]; // Vincenzo Librandi, Sep 22 2012
-
Select[6 Range[0, 200] + 4, PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)
-
from sympy import factorint
def semiprime(n): f = factorint(n); return sum(f[p] for p in f) == 2
print(list(filter(semiprime, range(4, 1115, 6)))) # Michael S. Branicky, Apr 10 2021
A091177
Numbers m such that the m-th prime is of the form 3*k-1.
Original entry on oeis.org
1, 3, 5, 7, 9, 10, 13, 15, 16, 17, 20, 23, 24, 26, 28, 30, 32, 33, 35, 39, 40, 41, 43, 45, 49, 51, 52, 54, 55, 56, 57, 60, 62, 64, 66, 69, 71, 72, 76, 77, 79, 81, 83, 86, 87, 89, 91, 92, 94, 96, 97, 98, 102, 103, 104, 107, 108, 109, 113, 116, 118, 119, 120, 123
Offset: 1
-
PrimePi/@Select[3Range[0,250]-1,PrimeQ] (* Harvey P. Dale, Apr 26 2011 *)
Select[Range[150],IntegerQ[(Prime[#]+1)/3]&] (* Harvey P. Dale, Dec 14 2021 *)
-
a091177(limit)={my(m=0);forprime(p=2,prime(limit),m++;if(p%3==2,print1(m,", ")))};
a091177(123) \\ Hugo Pfoertner, Aug 03 2021
A088879
Numbers n such that 3n + 5 is a prime.
Original entry on oeis.org
-1, 0, 2, 4, 6, 8, 12, 14, 16, 18, 22, 26, 28, 32, 34, 36, 42, 44, 48, 54, 56, 58, 62, 64, 74, 76, 78, 82, 84, 86, 88, 92, 96, 102, 104, 114, 116, 118, 126, 128, 132, 138, 142, 146, 148, 152, 154, 158, 162, 166, 168, 172, 184, 186, 188, 194, 196, 198, 204, 212, 214, 216, 218
Offset: 1
- M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
- Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997
A153170
Numbers k such that 3*k + 2 is not prime.
Original entry on oeis.org
2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102
Offset: 1
Distribution of the odd terms in the following triangular array:
*;
*, *;
*, 11, *;
*, *, *, *;
*, *, 25, *, *;
*, 21, *, *, 47, *;
*, *, *, *, *, *, *;
*, *, 39, *, *, 73, *, *;
*, 31, *, *, 69, *, *, 107, *;
*, *, *, *, *, *, *, *, *, *;
*, *, 53, *, *, 99, *, *, 145, *, *;
*, 41, *, *, 91, *, *, 141, *, *, 191, *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 1)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
-
[n: n in [1..110] | not IsPrime(3*n + 2)]; // Vincenzo Librandi, Oct 11 2012
-
for n from 0 to 100 do
if irem(factorial(3*n), 3*n+2) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[1, 200], !PrimeQ[3*# + 2] &] (* Vincenzo Librandi, Oct 11 2012 *)
-
for(n=1,200,if(!isprime(3*n+2), print1(n,", "))) \\ Joerg Arndt, Nov 27 2010
A157834
Numbers n such that 3n-2 and 3n+2 are both prime.
Original entry on oeis.org
3, 5, 7, 13, 15, 23, 27, 33, 35, 37, 43, 55, 65, 75, 77, 93, 103, 105, 117, 127, 133, 147, 153, 155, 163, 167, 205, 215, 225, 247, 253, 257, 275, 285, 287, 293, 295, 303, 313, 323, 337, 363, 365, 405, 427, 433, 435, 475, 477, 483, 495, 497, 517
Offset: 1
15*3 +/- 2 = 43,47 (both prime).
-
[n: n in [1..1000]|IsPrime(3*n-2)and IsPrime(3*n+2)] // Vincenzo Librandi, Dec 13 2010
-
select(t -> isprime(3*t+2) and isprime(3*t-2), [seq(t,t=3..1000,2)]); # Robert Israel, May 28 2017
-
Select[Range[600],AllTrue[3#+{2,-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 03 2019 *)
A228121
Numbers n such that 3n - 4 is prime.
Original entry on oeis.org
2, 3, 5, 7, 9, 11, 15, 17, 19, 21, 25, 29, 31, 35, 37, 39, 45, 47, 51, 57, 59, 61, 65, 67, 77, 79, 81, 85, 87, 89, 91, 95, 99, 105, 107, 117, 119, 121, 129, 131, 135, 141, 145, 149, 151, 155, 157, 161, 165, 169, 171, 175, 187, 189, 191, 197, 199, 201, 207, 215, 217, 219, 221, 227, 229
Offset: 1
For n = 15, 3*15 - 4 = 41 is prime.
A126955
Numbers n such that 2n+1, 3n+2 and 4n+3 are primes.
Original entry on oeis.org
1, 5, 65, 89, 119, 215, 455, 755, 779, 965, 1175, 1349, 1409, 1469, 1679, 1745, 1769, 1889, 1955, 2009, 2105, 2435, 2519, 2525, 2585, 2639, 4685, 5045, 5165, 5735, 5915, 5969, 6725, 7415, 7469, 7895, 8045, 9065, 9365, 9449, 9659, 9779, 9959, 10379
Offset: 1
Take n = 89. Then 2*89 + 1 = 179, 3*89 + 2 = 269 and 4*89 + 3 = 359 are primes.
-
Select[Range[10500], PrimeQ[2# + 1] && PrimeQ[3# + 2] && PrimeQ[4# + 3] &] (* Ray Chandler, Mar 20 2007 *)
Select[Range[11000],AllTrue[{2#+1,3#+2,4#+3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 23 2017 *)
Showing 1-10 of 15 results.
Comments