cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A025147 Number of partitions of n into distinct parts >= 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 12, 15, 17, 21, 25, 29, 35, 41, 48, 56, 66, 76, 89, 103, 119, 137, 159, 181, 209, 239, 273, 312, 356, 404, 460, 522, 591, 669, 757, 853, 963, 1085, 1219, 1371, 1539, 1725, 1933, 2164, 2418, 2702, 3016, 3362, 3746, 4171, 4637, 5155
Offset: 0

Views

Author

Keywords

Comments

From R. J. Mathar, Jul 31 2008: (Start)
These "partitions of n into distinct parts >= k" and "partitions of n into distinct parts, the least being k-1" come in pairs of similar, almost shifted but not identical, sequences:
The distinction in the definitions is that "distinct parts >= k" sets a lower bound to all parts, whereas "the least being ..." means that the lower limit must be attained by one of the parts. (End)
From N. J. A. Sloane, Sep 28 2008: (Start)
Generating functions and Maple programs for the sequences in the first and second columns of the above list are respectively:
For A025147, A025148, etc.:
f:=proc(k) product(1+x^j, j=k..100): series(%,x,100): seriestolist(%); end;
For A096765, A096749, etc.:
g:=proc(k) x^(k-1)*product(1+x^j, j=k..100): series(%,x,100): seriestolist(%); end; (End)
Also number of partitions of n+1 into distinct parts, the least being 1.
Number of different sums from 1+[1,3]+[1,4]+...+[1,n]. - Jon Perry, Jan 01 2004
Also number of partitions of n such that if k is the largest part, then all parts from 1 to k occur, k occurring at least twice. Example: a(7)=3 because we have [2,2,2,1],[2,2,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 09 2006
Also number of partitions of n+1 such that if k is the largest part, then all parts from 1 to k occur, k occurring exactly once. Example: a(7)=3 because we have [3,2,2,1],[3,2,1,1,1] and [2,1,1,1,1,1,1] (there is a simple bijection with the partitions defined before). - Emeric Deutsch, Apr 09 2006
Also number of partitions of n+1 into distinct parts where the number of parts is itself a part. - Reinhard Zumkeller, Nov 04 2007
Partial sums give A038348 (observed by Jonathan Vos Post, proved by several correspondents).
Trivially, number of partitions of n into distinct parts (as ascending lists) such that the first part is not 1, the second not 2, the third not 3, etc., see example. - Joerg Arndt, Jun 10 2013
Convolution with A033999 gives A270144 (apart from the offset). - R. J. Mathar, Jun 18 2016

Examples

			a(7) = 3, from {{3, 4}, {2, 5}, {7}}
From _Joerg Arndt_, Jun 10 2013: (Start)
There are a(17) = 21 partitions of 17 into distinct parts >=2:
01:  [ 2 3 4 8 ]
02:  [ 2 3 5 7 ]
03:  [ 2 3 12 ]
04:  [ 2 4 5 6 ]
05:  [ 2 4 11 ]
06:  [ 2 5 10 ]
07:  [ 2 6 9 ]
08:  [ 2 7 8 ]
09:  [ 2 15 ]
10:  [ 3 4 10 ]
11:  [ 3 5 9 ]
12:  [ 3 6 8 ]
13:  [ 3 14 ]
14:  [ 4 5 8 ]
15:  [ 4 6 7 ]
16:  [ 4 13 ]
17:  [ 5 12 ]
18:  [ 6 11 ]
19:  [ 7 10 ]
20:  [ 8 9 ]
21:  [ 17 ]
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Programs

  • Haskell
    a025147 = p 2 where
       p _ 0 = 1
       p k m = if m < k then 0 else p (k + 1) (m - k) + p (k + 1) m
    -- Reinhard Zumkeller, Dec 28 2011
    
  • Maple
    g:=product(1+x^j,j=2..65): gser:=series(g,x=0,62): seq(coeff(gser,x,n),n=0..57); # Emeric Deutsch, Apr 09 2006
    with(combstruct):ZL := {L = PowerSet(Sequence(Z,card>=2)) },unlabeled:seq(count([L,ZL],size=i),i=0..57); # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    CoefficientList[Series[Product[1+q^n, {n, 2, 60}], {q, 0, 60}], q]
    FoldList[ PartitionsQ[ #2+1 ]-#1&, 0, Range[ 64 ] ]
    (* also *)
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 2 &]; Table[d[n], {n, 12}] (* strict partitions, parts >= 2 *)
    Table[Length[d[n]], {n, 40}] (* A025147 for n >= 1 *)
    (* Clark Kimberling, Mar 07 2014 *)
    p[, 0] = 1; p[k, m_] := p[k, m] = If[m < k, 0, p[k+1, m-k] + p[k+1, m]]; Table[p[2, m], {m, 0, 59}] (* Jean-François Alcover, Apr 17 2014, after Reinhard Zumkeller *)
  • PARI
    a(n)=if(n,my(v=partitions(n));sum(i=1,#v,v[i][1]>1&&v[i]==vecsort(v[i],,8)),1) \\ Charles R Greathouse IV, Nov 20 2012

Formula

G.f.: Product_{k>=2} (1+x^k).
a(n) = A000009(n)-a(n-1) = Sum_{0<=k<=n} (-1)^k*A000009(n-k). - Henry Bottomley, May 09 2002
a(n)=t(n, 1), where t(n, k)=1+Sum_{i>j>k and i+j=n} t(i, j), 2<=k<=n. - Reinhard Zumkeller, Jan 01 2003
G.f.: 1 + Sum_{k=1..infinity} (x^(k*(k+3)/2) / Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Apr 09 2006
The previous g.f. is a special case of the g.f. for partitions into distinct parts >= L, Sum_{n>=0} ( x^(n*(n+2*L-1)/2) / Product_{k=1..n} (1-x^k) ). - Joerg Arndt, Mar 24 2011
G.f.: Sum_{n>=1} ( x^(n*(n+1)/2-1) / Product_{k=1..n-1} (1-x^k) ), a special case of the g.f. for partitions into distinct parts >= L, Sum_{n>=L-1} ( x^(n*(n+1)/2-L*(L-1)/2) / Product_{k=1..n-(L-1)} (1-x^k) ). - Joerg Arndt, Mar 27 2011
a(n) = Sum_{1A060016(n-k+1,k-1), for n>0. - Reinhard Zumkeller, Nov 04 2007
a(n) = A096765(n+1). - R. J. Mathar, Jul 31 2008
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ 1/2 * A000009(n).
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)).
(End)

Extensions

Corrected and extended by Dean Hickerson, Oct 10 2001

A364916 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
As a triangle, also the number of ways to write n as a *positive* linear combination of the parts of a strict integer partition of k.

Examples

			Array begins:
  1  1  1  2  2  3  4   5   6   8   10   12  15   18   22   27
  0  1  0  1  1  1  2   2   3   3   5    5   7    8    10   12
  0  1  1  2  1  2  4   4   5   6   9    10  13   15   19   23
  0  1  0  3  2  2  4   4   6   7   11   11  15   17   22   27
  0  1  1  3  3  3  7   7   8   10  16   17  23   27   33   42
  0  1  0  3  2  4  7   6   9   9   17   17  23   26   33   43
  0  1  1  5  3  4  12  10  13  16  26   27  36   42   52   68
  0  1  0  4  3  3  10  11  13  13  27   25  35   40   51   67
  0  1  1  5  4  5  15  13  19  20  36   37  51   58   72   97
  0  1  0  6  4  5  14  13  18  23  42   39  54   61   78   105
  0  1  1  6  4  6  20  17  23  25  54   50  69   80   98   138
  0  1  0  6  4  5  19  16  23  24  54   55  71   80   103  144
  0  1  1  8  6  7  27  23  30  35  72   70  103  113  139  199
  0  1  0  7  5  6  24  21  29  31  75   68  95   115  139  201
  0  1  1  8  5  7  31  27  36  39  90   86  122  137  178  255
  0  1  0  9  6  8  31  27  38  42  100  93  129  148  187  289
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   3  1  2  0  1  0
   4  1  1  3  1  1  0
   5  2  2  2  3  0  1  0
   6  2  4  2  3  3  1  1  0
   8  3  4  4  3  2  5  0  1  0
  10  3  5  4  7  4  3  4  1  1  0
  12  5  6  6  7  7  4  3  5  0  1  0
  15  5  9  7  8  6 12  3  4  6  1  1  0
  18  7 10 11 10  9 10 10  5  4  6  0  1  0
  22  8 13 11 16  9 13 11 15  5  4  6  1  1  0
  27 10 15 15 17 17 16 13 13 14  6  4  8  0  1  0
		

Crossrefs

Same as A116861 with offset 0 and rows reversed, non-strict version A364912.
Row n = 0 is A000009.
Row n = 1 is A096765.
Row n = 2 is A365005.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A000035.
Column k = 3 is A137719.
The main diagonal is A364910.
Left half has row sums A365002.
For not just strict partitions we have A365004, diagonal A364907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A066328 adds up distinct prime indices.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    t[n_,k_]:=Length[Join@@Table[combs[n,ptn],{ptn,Select[IntegerPartitions[k],UnsameQ@@#&]}]];
    Table[t[k,n-k],{n,0,15},{k,0,n}]

A318029 Expansion of Sum_{k>=2} x^(k*(k+3)/2) / Product_{j=1..k} (1 - x^j).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 9, 11, 14, 16, 20, 24, 28, 34, 40, 47, 55, 65, 75, 88, 102, 118, 136, 158, 180, 208, 238, 272, 311, 355, 403, 459, 521, 590, 668, 756, 852, 962, 1084, 1218, 1370, 1538, 1724, 1932, 2163, 2417, 2701, 3015, 3361, 3745, 4170, 4636, 5154, 5724
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2018

Keywords

Comments

Number of partitions of n into at least two distinct parts >= 2.

Examples

			a(9) = 4 because we have [7, 2], [6, 3], [5, 4] and [4, 3, 2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k (k + 3)/2)/Product[(1 - x^j), {j, 1, k}], {k, 2, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[x - 1/(1 - x) + 1/((1 + x) QPochhammer[x, x^2]), {x, 0, nmax}], x]
    Join[{0, 0}, Table[-1 + Sum[(-1)^(n - k) PartitionsQ[k], {k, 0, n}], {n, 2, 60}]]

Formula

G.f.: x - 1/(1 - x) + Product_{k>=2} (1 + x^k).
a(n) = A025147(n) - 1 for n > 1.

A374700 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of strictly increasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 1, 2, 0, 5, 0, 1, 3, 5, 0, 7, 0, 2, 4, 6, 9, 0, 11, 0, 2, 7, 10, 13, 17, 0, 15, 0, 3, 8, 20, 23, 24, 28, 0, 22, 0, 3, 14, 26, 47, 47, 42, 47, 0, 30, 0, 5, 17, 45, 66, 101, 92, 71, 73, 0, 42, 0, 5, 27, 61, 124, 154, 201, 166, 116, 114, 0, 56
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			Triangle begins:
   1
   0   1
   0   0   2
   0   1   0   3
   0   1   2   0   5
   0   1   3   5   0   7
   0   2   4   6   9   0  11
   0   2   7  10  13  17   0  15
   0   3   8  20  23  24  28   0  22
   0   3  14  26  47  47  42  47   0  30
   0   5  17  45  66 101  92  71  73   0  42
   0   5  27  61 124 154 201 166 116 114   0  56
   0   7  33 101 181 300 327 379 291 182 170   0  77
   0   8  48 138 307 467 668 656 680 488 282 253   0 101
Row n = 6 counts the following compositions:
  .  (15)   (24)    (231)   (312)    .  (6)
     (123)  (141)   (213)   (2121)      (51)
            (114)   (132)   (2112)      (42)
            (1212)  (1311)  (1221)      (411)
                    (1131)  (1122)      (33)
                    (1113)  (12111)     (321)
                            (11211)     (3111)
                            (11121)     (222)
                            (11112)     (2211)
                                        (21111)
                                        (111111)
		

Crossrefs

Column n = k is A000041.
Column k = 1 is A096765.
Column k = 2 is A374705.
Row-sums are A011782.
For length instead of sum we have A333213.
Leaders of strictly increasing runs in standard compositions are A374683.
The corresponding rank statistic is A374684.
Other types of runs (instead of strictly increasing):
- For leaders of constant runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of weakly increasing runs we have A374637.
- For leaders of weakly decreasing runs we have A374748.
- For leaders of strictly decreasing runs we have A374766.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335548 counts non-contiguous compositions, ranks A374253.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,Less]]==k&]],{n,0,15},{k,0,n}]

A379666 Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n with product k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 01 2025

Keywords

Comments

Counts finite multisets of positive integers by sum and product.

Examples

			Array begins:
        k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
        -----------------------------------------------
   n=0:  1   0   0   0   0   0   0   0   0   0   0   0
   n=1:  1   0   0   0   0   0   0   0   0   0   0   0
   n=2:  1   1   0   0   0   0   0   0   0   0   0   0
   n=3:  1   1   1   0   0   0   0   0   0   0   0   0
   n=4:  1   1   1   2   0   0   0   0   0   0   0   0
   n=5:  1   1   1   2   1   1   0   0   0   0   0   0
   n=6:  1   1   1   2   1   2   0   2   1   0   0   0
   n=7:  1   1   1   2   1   2   1   2   1   1   0   2
   n=8:  1   1   1   2   1   2   1   3   1   1   0   3
   n=9:  1   1   1   2   1   2   1   3   2   1   0   3
  n=10:  1   1   1   2   1   2   1   3   2   2   0   3
  n=11:  1   1   1   2   1   2   1   3   2   2   1   3
  n=12:  1   1   1   2   1   2   1   3   2   2   1   4
For example, the A(9,12) = 3 partitions are: (6,2,1), (4,3,1,1), (3,2,2,1,1).
Antidiagonals begin:
   n+k=1: 1
   n+k=2: 0 1
   n+k=3: 0 0 1
   n+k=4: 0 0 1 1
   n+k=5: 0 0 0 1 1
   n+k=6: 0 0 0 1 1 1
   n+k=7: 0 0 0 0 1 1 1
   n+k=8: 0 0 0 0 2 1 1 1
   n+k=9: 0 0 0 0 0 2 1 1 1
  n+k=10: 0 0 0 0 0 1 2 1 1 1
  n+k=11: 0 0 0 0 0 1 1 2 1 1 1
  n+k=12: 0 0 0 0 0 0 2 1 2 1 1 1
  n+k=13: 0 0 0 0 0 0 0 2 1 2 1 1 1
  n+k=14: 0 0 0 0 0 0 2 1 2 1 2 1 1 1
  n+k=15: 0 0 0 0 0 0 1 2 1 2 1 2 1 1 1
  n+k=16: 0 0 0 0 0 0 0 1 3 1 2 1 2 1 1 1
For example, antidiagonal n+k=10 counts the following partitions:
  n=5: (5)
  n=6: (411), (2211)
  n=7: (31111)
  n=8: (2111111)
  n=9: (111111111)
so the 10th antidiagonal is: (0,0,0,0,0,1,2,1,1,1).
		

Crossrefs

Row sums are A000041 = partitions of n, strict A000009, no ones A002865.
Diagonal A(n,n) is A001055(n) = factorizations of n, strict A045778.
Antidiagonal sums are A379667.
The case without ones is A379668, antidiagonal sums A379669 (zeros A379670).
The strict case is A379671, antidiagonal sums A379672.
The strict case without ones is A379678, antidiagonal sums A379679 (zeros A379680).
A316439 counts factorizations by length, partitions A008284.
A326622 counts factorizations with integer mean, strict A328966.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    nn=12;
    tt=Table[Length[Select[IntegerPartitions[n],Times@@#==k&]],{n,0,nn},{k,1,nn}] (* array *)
    tr=Table[tt[[j,i-j]],{i,2,nn},{j,i-1}] (* antidiagonals *)
    Join@@tr (* sequence *)

A097986 Number of strict integer partitions of n with a part dividing all the other parts.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 3, 5, 5, 7, 6, 12, 9, 13, 15, 20, 18, 28, 26, 37, 39, 47, 49, 71, 68, 85, 94, 117, 120, 159, 160, 201, 216, 257, 277, 348, 357, 430, 470, 562, 592, 720, 758, 901, 981, 1134, 1220, 1457, 1542, 1798, 1952, 2250, 2419, 2819, 3023, 3482, 3773, 4291
Offset: 1

Views

Author

Vladeta Jovovic, Oct 23 2004

Keywords

Comments

If n > 0, we can assume such a part is the smallest. - Gus Wiseman, Apr 23 2021
Also the number of uniform (constant multiplicity) partitions of n containing 1, ranked by A367586. The strict case is A096765. The version without 1 is A329436. - Gus Wiseman, Dec 01 2023

Examples

			From _Gus Wiseman_, Dec 01 2023: (Start)
The a(1) = 1 through a(8) = 5 strict partitions with a part dividing all the other parts:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)
            (2,1)  (3,1)  (4,1)  (4,2)    (6,1)    (6,2)
                                 (5,1)    (4,2,1)  (7,1)
                                 (3,2,1)           (4,3,1)
                                                   (5,2,1)
The a(1) = 1 through a(8) = 5 uniform partitions containing 1:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (71)
             (111)  (1111)  (11111)  (321)     (421)      (431)
                                     (2211)    (1111111)  (521)
                                     (111111)             (3311)
                                                          (11111111)
(End)
		

Crossrefs

The non-strict version is A083710.
The case with no 1's is A098965.
The Heinz numbers of these partitions are A339563.
The strict complement is counted by A341450.
The version for "divisible by" instead of "dividing" is A343347.
The case where there is also a part divisible by all the others is A343378.
The case where there is no part divisible by all the others is A343381.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Take[ CoefficientList[ Expand[ Sum[x^k*Product[1 + x^(k*i), {i, 2, 62}], {k, 62}]], x], {2, 60}] (* Robert G. Wilson v, Nov 01 2004 *)
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[And@@IntegerQ/@(#/x), {x,#}]&]], {n,0,30}] (* Gus Wiseman, Apr 23 2021 *)
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(sum(k=1,N,x^k*prod(i=2,N-k, (1+x^(k*i)))))}
    A_x(50) \\ John Tyler Rascoe, Nov 19 2024

Formula

a(n) = Sum_{d|n} A025147(d-1).
G.f.: Sum_{k>=1} (x^k*Product_{i>=2} (1+x^(k*i))).
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 06 2025

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
Name shortened by Gus Wiseman, Apr 23 2021

A352872 Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A118672 in having 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      2: {1}           28: {1,1,4}         56: {1,1,1,4}
      4: {1,1}         30: {1,2,3}         58: {1,10}
      6: {1,2}         32: {1,1,1,1,1}     60: {1,1,2,3}
      8: {1,1,1}       34: {1,7}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       63: {2,2,4}
     10: {1,3}         38: {1,8}           64: {1,1,1,1,1,1}
     12: {1,1,2}       40: {1,1,1,3}       66: {1,2,5}
     14: {1,4}         42: {1,2,4}         68: {1,1,7}
     16: {1,1,1,1}     44: {1,1,5}         70: {1,3,4}
     18: {1,2,2}       45: {2,2,3}         72: {1,1,1,2,2}
     20: {1,1,3}       46: {1,9}           74: {1,12}
     22: {1,5}         48: {1,1,1,1,2}     75: {2,3,3}
     24: {1,1,1,2}     50: {1,3,3}         76: {1,1,8}
     26: {1,6}         52: {1,1,6}         78: {1,2,6}
     27: {2,2,2}       54: {1,2,2,2}       80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
		

Crossrefs

* = unproved
These partitions are counted by A238395, strict A096765.
These are the nonzero positions in A352822.
*The complement reverse version is A352826, counted by A064428.
*The reverse version is A352827, counted by A001522 (strict A352829).
The complement is A352830, counted by A238394 (strict A025147).
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&]

A379672 Number of finite sets of positive integers with sum + product = n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 3, 1, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 3, 1, 2, 4, 4, 4, 3, 2, 4, 3, 1, 5, 5, 2, 3, 4, 3, 3, 5, 5, 4, 2, 1, 5, 6, 3, 4, 4, 3, 4, 3, 2, 4, 6, 4, 5, 6, 3, 4, 5, 4, 4, 4, 5, 5, 2, 2, 6, 7, 4, 3, 5
Offset: 0

Views

Author

Gus Wiseman, Jan 03 2025

Keywords

Comments

Antidiagonal sums of A379671, starting with 0.
The only zeros are a(0) and a(3).

Examples

			The a(n) sets for n = 2, 11, 20, 35, 47, 60:
  {1}  {1,5}  {10}     {3,8}    {5,7}    {30}
       {2,3}  {2,6}    {1,17}   {1,23}   {1,5,9}
              {1,3,4}  {2,11}   {2,15}   {2,4,6}
                       {1,4,6}  {3,11}   {1,2,19}
                                {2,3,6}  {1,3,14}
                                         {1,4,11}
		

Crossrefs

Arrays counting multisets by sum and product:
- partitions: A379666, antidiagonal sums A379667
- partitions without ones: A379668, antidiagonal sums A379669 (zeros A379670)
- strict partitions: A379671, antidiagonal sums A379672 (this)
- strict partitions without ones: A379678, antidiagonal sums A379679 (zeros A379680)
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A326156, A326172, A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721
- different: A379736, ranks A379722, see A111133
A000041 counts integer partitions, strict A000009.
A025147 counts strict partitions into parts > 1, non-strict A002865.
A318950 counts factorizations by sum.

Programs

  • Mathematica
    Table[Length[Select[Join@@Array[IntegerPartitions,n,0],UnsameQ@@#&&Total[#]+Times@@#==n&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Jan 11 2025

A087787 a(n) = Sum_{k=0..n} (-1)^(n-k)*A000041(k).

Original entry on oeis.org

1, 0, 2, 1, 4, 3, 8, 7, 15, 15, 27, 29, 48, 53, 82, 94, 137, 160, 225, 265, 362, 430, 572, 683, 892, 1066, 1370, 1640, 2078, 2487, 3117, 3725, 4624, 5519, 6791, 8092, 9885, 11752, 14263, 16922, 20416, 24167, 29007, 34254, 40921, 48213, 57345, 67409
Offset: 0

Views

Author

Vladeta Jovovic, Oct 07 2003

Keywords

Comments

Essentially first differences of A024786 (see the formula). Also, a(n) is the number of 2's in the last section of the set of partitions of n+2 (see A135010). - Omar E. Pol, Sep 10 2008
From Gus Wiseman, May 20 2024: (Start)
Also the number of integer partitions of n containing an even number of ones, ranked by A003159. The a(0) = 1 through a(8) = 15 partitions are:
() . (2) (3) (4) (5) (6) (7) (8)
(11) (22) (32) (33) (43) (44)
(211) (311) (42) (52) (53)
(1111) (222) (322) (62)
(411) (511) (332)
(2211) (3211) (422)
(21111) (31111) (611)
(111111) (2222)
(3311)
(4211)
(22211)
(41111)
(221111)
(2111111)
(11111111)
Also the number of integer partitions of n + 1 containing an odd number of ones, ranked by A036554.
(End)

Crossrefs

The unsigned version is A000070, strict A036469.
For powers of 2 instead number of partitions we have A001045.
The strict or odd version is A025147 or A096765.
The ordered version (compositions instead of partitions) is A078008.
For powers of 2 instead of -1 we have A259401, cf. A259400.
A002865 counts partitions with no ones, column k=0 of A116598.
A072233 counts partitions by sum and length.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*PartitionsP[k], {k,0,n}], {n,0,50}] (* Vaclav Kotesovec, Aug 16 2015 *)
    (* more efficient program *) sig = 1; su = 1; Flatten[{1, Table[sig = -sig; su = su + sig*PartitionsP[n]; Abs[su], {n, 1, 50}]}] (* Vaclav Kotesovec, Nov 06 2016 *)
    Table[Length[Select[IntegerPartitions[n], EvenQ[Count[#,1]]&]],{n,0,30}] (* Gus Wiseman, May 20 2024 *)
  • Python
    from sympy import npartitions
    def A087787(n): return sum(-npartitions(k) if n-k&1 else npartitions(k) for k in range(n+1)) # Chai Wah Wu, Oct 25 2023

Formula

G.f.: 1/(1+x)*1/Product_{k>0} (1-x^k).
a(n) = 1/n*Sum_{k=1..n} (sigma(k)+(-1)^k)*a(n-k).
a(n) = A024786(n+2)-A024786(n+1). - Omar E. Pol, Sep 10 2008
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) * (1 + (11*Pi/(24*sqrt(6)) - sqrt(3/2)/Pi)/sqrt(n) - (11/16 + (23*Pi^2)/6912)/n). - Vaclav Kotesovec, Nov 05 2016
a(n) = A000041(n) - a(n-1). - Jon Maiga, Aug 29 2019
Alternating partial sums of A000041. - Gus Wiseman, May 20 2024

A352829 Number of strict integer partitions y of n with a fixed point y(i) = i.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 30, 36, 42, 50, 60, 70, 82, 96, 110, 126, 144, 163, 184, 208, 234, 264, 298, 336, 380, 430, 486, 550, 622, 702, 792, 892, 1002, 1125, 1260, 1408, 1572, 1752, 1950, 2168, 2408, 2672
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(11) = 2 through a(17) = 12 partitions (A-F = 10..15):
  (92)   (A2)   (B2)    (C2)    (D2)     (E2)     (F2)
  (821)  (543)  (643)   (653)   (753)    (763)    (863)
         (921)  (A21)   (743)   (843)    (853)    (953)
                (5431)  (B21)   (C21)    (943)    (A43)
                        (5432)  (6432)   (D21)    (E21)
                        (6431)  (6531)   (6532)   (7532)
                                (7431)   (7432)   (7631)
                                (54321)  (7531)   (8432)
                                         (8431)   (8531)
                                         (64321)  (9431)
                                                  (65321)
                                                  (74321)
		

Crossrefs

The non-strict version is A001522 (unproved, ranked by A352827 or A352874).
The version for permutations is A002467, complement A000166.
The reverse version is A096765 (or A025147 shifted right once).
The non-strict reverse version is A238395, ranked by A352872.
The complement is counted by A352828, non-strict A064428 (unproved, ranked by A352826 or A352873).
The version for compositions is A352875, complement A238351.
A000041 counts partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902.
A008290 counts permutations by fixed points, unfixed A098825.
A115720 and A115994 count partitions by their Durfee square.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]>0&]],{n,0,30}]

Formula

G.f.: Sum_{n>=1} q^(n*(3*n-1)/2)*Product_{k=1..n-1} (1+q^k)/(1-q^k). - Jeremy Lovejoy, Sep 26 2022
Showing 1-10 of 26 results. Next