cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006451 Numbers k such that k*(k+1)/2 + 1 is a square.

Original entry on oeis.org

0, 2, 5, 15, 32, 90, 189, 527, 1104, 3074, 6437, 17919, 37520, 104442, 218685, 608735, 1274592, 3547970, 7428869, 20679087, 43298624, 120526554, 252362877, 702480239, 1470878640, 4094354882, 8572908965, 23863649055, 49966575152
Offset: 0

Views

Author

Keywords

References

  • A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Problem J/A2, Jul/August 1973 pp. 73-74; solution Jan 1974 (see link).
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. numbers m such that k*A000217(m)+1 is a square: this sequence for k=1; m=0 for k=2; A233450 for k=3; A001652 for k=4; A129556 for k=5; A001921 for k=6. - Bruno Berselli, Dec 16 2013

Programs

  • Haskell
    a006451 n = a006451_list !! n
    a006451_list = 0 : 2 : 5 : 15 : map (+ 2)
       (zipWith (-) (map (* 6) (drop 2 a006451_list)) a006451_list)
    -- Reinhard Zumkeller, Jan 10 2012
  • Maple
    N:= 100: # to get a(0) to a(N)
    A[0]:= 0: A[1]:= 2: A[2]:= 5: A[3]:= 15:
    for n from 4 to N do A[n]:= 6*A[n-2] - A[n-4] + 2 od:
    seq(A[n],n=0..N); # Robert Israel, Aug 26 2014
  • Mathematica
    LinearRecurrence[{1,6,-6,-1,1},{0,2,5,15,32},30] (* Harvey P. Dale, Jul 17 2013 *)
    Select[Range[10^6], IntegerQ@ Sqrt[# (# + 1)/2 + 1] &] (* Michael De Vlieger, Apr 25 2017 *)
  • PARI
    for(n=1,10000,t=n*(n+1)/2+1;if(issquare(t), print1(n,", "))) \\ Joerg Arndt, Oct 10 2009
    

Formula

G.f.: x*(-2-3*x+2*x^2+x^3)/(x-1)/(x^2+2*x-1)/(x^2-2*x-1). Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
a(n) = 6*a(n-2) - a(n-4) + 2 with a(0)=0, a(1)=2, a(2)=5, a(3)=15. - Zak Seidov, Apr 15 2008
a(n) = 3*a(n-2) + 4*sqrt((a(n-2)^2 + a(n-2))/2 + 1) + 1 with a(0) = 0, a(1) = 2. - Raphie Frank, Feb 02 2013
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5); a(0)=0, a(1)=2, a(2)=5, a(3)=15, a(4)=32. - Harvey P. Dale, Jul 17 2013
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n+1) = A098790(2*n+1). - Hermann Stamm-Wilbrandt, Aug 26 2014
a(2*n) = A098586(2*n-1), for n>0. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(n) = 8*sqrt(T(a(n-2)) + 1) + a(n-4) where T(a(n)) = A000217(a(n)), and a(-1) = -1, a(0)=0, a(1)=2, a(2)=5. - Vladimir Pletser, Apr 29 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Edited by N. J. A. Sloane, Oct 24 2009, following discussions by several correspondents in the Sequence Fans Mailing List, Oct 10 2009

A012132 Numbers z such that x*(x+1) + y*(y+1) = z*(z+1) is solvable in positive integers x,y.

Original entry on oeis.org

3, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 26, 27, 28, 31, 33, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 71, 73, 74, 75, 76, 77, 78, 80, 81, 83, 86, 88, 89, 91, 92, 93
Offset: 1

Views

Author

Sander van Rijnswou (sander(AT)win.tue.nl)

Keywords

Comments

Theorem (Sierpinski, 1963): n is a term iff n^2+(n+1)^2 is a composite number. - N. J. A. Sloane, Feb 29 2020
For n > 1, A047219 is a subset of this sequence. This is because n^2 + (n+1)^2 is divisible by 5 if n is (1 or 3) mod 5 (also see A027861). - Dmitry Kamenetsky, Sep 02 2008
From Hermann Stamm-Wilbrandt, Sep 10 2014: (Start)
For n > 0, A212160 is a subset of this sequence (n^2 + (n+1)^2 is divisible by 13 if n == (2 or 10) (mod 13)).
For n >= 0, A212161 is a subset of this sequence (n^2 + (n+1)^2 is divisible by 17 if n == (6 or 10) (mod 17)).
The above are for divisibility by 5, 13, 17; notation (1,3,5), (2,10,13), (6,10,17). Divisibility by p for a and p-a-1; notation (a,p-a-1,p). These are the next tuples: (8,20,29), (15,21,37), (4,36,41), (11,41,53), ... . The corresponding sequences are a subset of this sequence (8,20,37,49,66,78,... for (8,20,29)). These sequences have no entries in the OEIS yet. For any prime of the form 4*k+1 there is exactly one of these tuples/sequences.
For n > 1, A000217 (triangular numbers) is a subset of this sequence (3,6,10,15,...); z=A000217(n), y=z-1, x=n.
For n > 0, A001652 is a subset of this sequence; z=A001652(n), x=y=A053141(n).
For n > 1, A001108(=A115598) is a subset of this sequence; z=A001108(n), x=A076708(n), y=x+1.
For n > 0, A124124(2*n+1)(=A098790(2*n)) is a subset of this sequence (6,37,218,...); z=A124124(2*n+1), x=a(n)-1, y=a(n)+1, a(m) = 6*a(m-1) - a(m-2) + 2, a(0)=0, a(1)=4.
(End)

References

  • Aviezri S. Fraenkel, Diophantine equations involving generalized triangular and tetrahedral numbers, pp. 99-114 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.

Crossrefs

Complement of A027861. - Michael Somos, Jun 08 2000

Programs

Extensions

More terms and references from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 09 2000

A124124 Nonnegative integers n such that 2n^2 + 2n - 3 is square.

Original entry on oeis.org

1, 2, 6, 13, 37, 78, 218, 457, 1273, 2666, 7422, 15541, 43261, 90582, 252146, 527953, 1469617, 3077138, 8565558, 17934877, 49923733, 104532126, 290976842, 609257881, 1695937321, 3551015162, 9884647086, 20696833093, 57611945197, 120629983398, 335787024098
Offset: 1

Views

Author

John W. Layman, Nov 29 2006

Keywords

Comments

First differences are apparently in A143608. [R. J. Mathar, Jul 17 2009]
Alternative definition: T_n and (T_n - 1)/2 are triangular numbers. - Raphie Frank, Sep 06 2012

Crossrefs

Programs

  • Maple
    A124124 := proc(n)
    coeftayl(x*(1+x-2*x^2+x^3+x^4)/((1-x)*(x^2-2*x-1)*(x^2+2*x-1)), x=0, n);
    end proc:
    seq(A124124(n), n=1..20); # Wesley Ivan Hurt, Aug 04 2014
    # Alternative:
    a[1]:= 1: a[2]:= 2: a[3]:= 6:
    for n from 4 to 1000 do
    a[n]:= (3 + 2*(n mod 2))*(a[n-1]-a[n-2])+a[n-3]
    od:
    seq(a[n],n=1..100); # Robert Israel, Aug 13 2014
  • Mathematica
    LinearRecurrence[{1,6,-6,-1,1},{1,2,6,13,37},40] (* Harvey P. Dale, Nov 05 2011 *)
    CoefficientList[Series[(1 + x - 2*x^2 + x^3 + x^4)/((1 - x)*(x^2 - 2*x - 1)*(x^2 + 2*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 04 2014 *)
  • PARI
    for(n=1,10^10,if(issquare(2*n^2+2*n-3),print1(n,", "))) \\ Derek Orr, Aug 13 2014

Formula

It appears that a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) if n is even, a(n) = 5*a(n-1)-5*a(n-2)+a(n-3) if n is odd. Can anyone confirm this?
Corrected and confirmed (using the g.f.) by Robert Israel, Aug 27 2014
2*a(n) = sqrt(7+2*A077442(n-1)^2)-1. - R. J. Mathar, Dec 03 2006
a(n) = a(n-1)+6*a(n-2)-6*a(n-3)-a(n-4)+a(n-5). G.f.: -x*(1+x-2*x^2+x^3+x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)). [R. J. Mathar, Jul 17 2009]
For n>0, a(2n-1) = 2*A001653(n) - A046090(n-1) and a(2n) = 2*A001653(n) + A001652(n-1). - Charlie Marion, Jan 03 2012
From Raphie Frank, Sep 06 2012: (Start)
If y = A006452(n), then a(n) = 2y + ((sqrt(8y^2 - 7) - 1)/2 - (1 - sgn(n))).
Also see A216134 [a(n) = y + ((sqrt(8y^2 - 7) - 1)/2 - (1 - sgn(n)))].
(End)
From Hermann Stamm-Wilbrandt, Aug 27 2014: (Start)
a(2*n+2) = A098586(2*n).
a(2*n+1) = A098790(2*n).
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>6. (End)
a(2*n+1)^2 + (a(2*n+1)+1)^2 = A038761(n)^2 + 2^2. - Hermann Stamm-Wilbrandt, Aug 31 2014

Extensions

More terms from Harvey P. Dale, Feb 07 2011
More terms from Wesley Ivan Hurt, Aug 04 2014

A266504 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = a(1) = 2, a(2) = 1, a(3) = 3.

Original entry on oeis.org

2, 2, 1, 3, 4, 8, 9, 19, 22, 46, 53, 111, 128, 268, 309, 647, 746, 1562, 1801, 3771, 4348, 9104, 10497, 21979, 25342, 53062, 61181, 128103, 147704, 309268, 356589, 746639, 860882, 1802546, 2078353, 4351731, 5017588, 10506008, 12113529, 25363747, 29244646, 61233502
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

This sequence gives all x in N | 2*x^2 - 7(-1)^x = y^2. The companion sequence to this sequence, giving y values, is A266505.
A266505(n)/a(n) converges to sqrt(2).
Alternatively, 1/4*(3*A002203(floor[n/2]) - A002203(n-(-1)^n)), where A002203 gives the Companion Pell numbers, or, in Lucas sequence notation, V_n(2, -1).
Alternatively, bisection of A266506.
Alternatively, A048654(n -1) and A078343(n + 1) interlaced.
Alternatively, A100525(n-1), A266507(n), A038761(n) and A253811(n) interlaced.
Let b(n) = (a(n) - a(n)(mod 2))/2, that is b(n) = {1, 1, 0, 1, 2, 4, 4, 9, 11, 23, 26, 55, 64, ...}. Then:
A006452(n) = {b(4n+0) U b(4n+1)} gives n in N such that n^2 - 1 is triangular;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that n^2 + n + 1 is triangular (indices of Sophie Germain triangular numbers);
A216162(n) = {b(4n+0) U b(4n+2) U b(4n+1) U b(4n+3)}, sequences A006452 and A216134 interlaced.

Crossrefs

Programs

  • Magma
    I:=[2,2,1,3]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {2, 2, 1, 3}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(1 - x) (2 + 4 x + x^2)/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 41}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    Vec((1-x)*(2+4*x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ Colin Barker, Dec 31 2015

Formula

a(n) = 1/sqrt(8)*(+sqrt(2)*(1+sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n - 3*(1-sqrt(2))^(floor(n/2)-(-1)^n) + sqrt(2)*(1-sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n + 3*(1+sqrt(2))^(floor(n/2)-(-1)^n)).
a(n) = 1/4*((3*((1+sqrt(2))^floor(n/2)+(1-sqrt(2))^floor(n/2))) - (-1)^n*((1+sqrt(2))^(floor(n/2)-(-1)^n)+(1-sqrt(2))^(floor(n/2)-(-1)^n))).
a(2n) = (+sqrt(2)*(1+sqrt(2))^(n-1) - 3 *(1-sqrt(2))^(n-1) + sqrt(2)*(1-sqrt(2))^(n-1) + 3*(1 + sqrt(2))^(n-1))/sqrt(8) = A048654(n -1).
a(2n) = 1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) - ((1+sqrt(2))^(n-1)+(1-sqrt(2))^(n-1))) = A048654(n -1).
a(2n + 1) = (-sqrt(2)*(1+sqrt(2))^(n+1) - 3 *(1-sqrt(2))^(n+1) - sqrt(2)*(1-sqrt(2))^(n+1) + 3*(1+sqrt(2))^(n+1))/sqrt(8) = A078343(n + 1).
a(2n + 1) =1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) + ((1+sqrt(2))^(n+1)+(1-sqrt(2))^(n+1))) = A078343(n + 1).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A100525(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A266507(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038761(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A253811(n).
sqrt(2*a(n)^2 - 7(-1)^a(n))*sgn(2*n - 1) = A266505(n).
(a(2n + 1) + a(2n))/2 = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 1) - a(2n))/2 = A000129(n), where A000129 gives the Pell numbers.
(a(2n+2) + a(2n+1))*2 = A002203(n+2)
(a(2n+2) - a(2n+1))*2 = A002203(n-1).
G.f.: (1-x)*(2+4*x+x^2) / (1-2*x^2-x^4). - Colin Barker, Dec 31 2015

A048745 Partial sums of A048654.

Original entry on oeis.org

1, 5, 14, 36, 89, 217, 526, 1272, 3073, 7421, 17918, 43260, 104441, 252145, 608734, 1469616, 3547969, 8565557, 20679086, 49923732, 120526553, 290976841, 702480238, 1695937320, 4094354881, 9884647085, 23863649054, 57611945196, 139087539449, 335787024097
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,5,14]; [n le 3 select I[n] else 3*Self(n-1) -Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, May 23 2021
    
  • Mathematica
    t={1,5}; Do[AppendTo[t, t[[-2]] + 2*t[[-1]] + 3], {n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Jan 27 2012 *)
    Accumulate[LinearRecurrence[{2,1},{1,4},30]] (* or *) LinearRecurrence[{3,-1,-1},{1,5,14},30] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    a(n)=polcoeff((1+2*x)/(1-3*x+x^2+x^3)+x*O(x^n),n) \\ Paul D. Hanna
    
  • Sage
    [(5*lucas_number1(n+1,2,-1) + 3*lucas_number1(n,2,-1) -3)/2 for n in (0..30)] # G. C. Greubel, May 23 2021

Formula

a(n) = 2*a(n-1) + a(n-2) + 3, a(0)=1, a(1)=5.
a(n) = ( ((4+(5/2)*sqrt(2))*(1+sqrt(2))^n - (4-(5/2)*sqrt(2))*(1-sqrt(2))^n)/ 2*sqrt(2) ) - 3/2.
G.f.: (1+2*x)/((1-x)*(1-2*x-x^2)). - Paul D. Hanna, Feb 22 2005
a(n) = 3*a(n-1) - a(n-2) - a(n-3), n>2, a(0)=1, a(1)=5, a(2)=14. - Philippe Deléham, Dec 16 2008
2*a(n) = A135532(n+2) - 3. - R. J. Mathar, Mar 06 2013
a(n) = (1/2)*( 5*P(n+1) + 3*P(n) - 3), where P(n) = A000129(n). - G. C. Greubel, May 23 2021

A209703 Triangle of coefficients of polynomials u(n,x) jointly generated with A209704; see the Formula section.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 4, 6, 5, 0, 5, 10, 14, 8, 0, 6, 15, 28, 28, 13, 0, 7, 21, 48, 66, 55, 21, 0, 8, 28, 75, 129, 149, 104, 34, 0, 9, 36, 110, 225, 326, 319, 193, 55, 0, 10, 45, 154, 363, 626, 774, 661, 352, 89, 0, 11, 55, 208, 553, 1099, 1625, 1761, 1332, 634
Offset: 1

Views

Author

Clark Kimberling, Mar 12 2012

Keywords

Comments

For n>1, row n begins with 0, has second term n, and ends with F(n+1), where F=A000045 (Fibonacci numbers); for n>2, column 2 consists of triangular numbers.
Row sums: A098790.
Alternating row sums: 1,-2,0,-3,-1,-4,-3,-5,-3,-6,,...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
0...2
0...3....3
0...4....6...5
0...5...10...14...8
First three polynomials v(n,x): 1, 2x, 3x + 3x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A209703 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A209704 *)

Formula

u(n,x)=x*u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A266505 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5.

Original entry on oeis.org

-1, 1, 3, 5, 5, 11, 13, 27, 31, 65, 75, 157, 181, 379, 437, 915, 1055, 2209, 2547, 5333, 6149, 12875, 14845, 31083, 35839, 75041, 86523, 181165, 208885, 437371, 504293, 1055907, 1217471, 2549185, 2939235, 6154277, 7095941, 14857739, 17131117, 35869755, 41358175, 86597249, 99847467
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

a(n)/A266504(n) converges to sqrt(2).
Alternatively, bisection of A266506.
Alternatively, A135532(n) and A048655(n) interlaced.
Alternatively, A255236(n-1), A054490(n), A038762(n) and A101386(n) interlaced.
Let b(n) = (a(n) - (a(n) mod 2))/2, that is b(n) = {-1, 0, 1, 2, 2, 5, 6, 13, 15, 32, 37, 78, 90, ...}. Then:
A006451(n) = {b(4n+0) U b(4n+1)} gives n in N such that triangular(n) + 1 is square;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that triangular(n) follows form n^2 + n + 1 (twice a triangular number + 1).

Crossrefs

Programs

  • Magma
    I:=[-1,1,3,5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end:  seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    my(x='x+O('x^40)); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ G. C. Greubel, Jul 26 2018

Formula

G.f.: (-1 + 3*x)*(1 + x)^2/(1 - 2*x^2 - x^4).
a(n) = (-(1+sqrt(2))^floor(n/2)*(-1)^n - sqrt(8)*(1-sqrt(2))^floor(n/2) - (1-sqrt(2))^floor(n/2)*(-1)^n + sqrt(8)*(1+sqrt(2))^floor(n/2))/2.
a(n) = 3*(((1+sqrt(2))^floor(n/2)-(1-sqrt(2))^floor(n/2))/sqrt(8)) - (-1)^n*(((1+sqrt(2))^(floor(n/2)-(-1)^n)-(1-sqrt(2))^(floor(n/2)-(-1)^n))/sqrt(8)).
a(n) = (3*A000129(floor(n/2)) - A000129(n-(-1)^n)), where A000129 gives the Pell numbers.
a(n) = sqrt(2*A266504(n)^2 - 7*(-1)^A266504(n))*sgn(2*n-1), where A266504 gives all x in N such that 2*x^2 - 7*(-1)^x = y^2. This sequence gives associated y values.
a(2n) = (-(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n - (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n) = A135532(n).
a(2n) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) - (((1+sqrt(2))^(n-1)-(1-sqrt(2))^(n-1))/sqrt(8)) = A135532(n).
a(2n+1) = (+(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n + (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n + 1) = A048655(n).
a(2n+1) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) + (((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/sqrt(8)) = A048655(n).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A255236(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A054490(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038762(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A101386(n).
(sqrt(2*(a(2n + 1) )^2 + 14*(-1)^floor(n/2)))/2 = A266504(n).
(a(2n + 1) + a(2n))/8 = A000129(n), where A000129 gives the Pell numbers.
a(2n + 1) - a(2n) = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 2) + a(2n + 1))/2 = A000129(n+2).
(a(2n + 2) - a(2n + 1))/2 = A000129(n-1).
Showing 1-7 of 7 results.