cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A105992 Near-repunit primes.

Original entry on oeis.org

101, 113, 131, 151, 181, 191, 211, 311, 811, 911, 1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111, 10111, 11113, 11117, 11119, 11131, 11161, 11171, 11311, 11411, 16111, 101111, 111119, 111121, 111191, 111211, 111611, 112111, 113111, 131111, 311111, 511111
Offset: 1

Views

Author

Shyam Sunder Gupta, Apr 29 2005

Keywords

Comments

According to the prime glossary "a near-repunit prime is a prime all but one of whose digits are 1." This would also include {2, 3, 5, 7, 13, 17, 19, 31, 41, 61 and 71}, but this sequence only lists terms with more than two digits. - M. F. Hasler, Feb 10 2020

Examples

			a(2)=113 is a term because 113 is a prime and all digits are 1 except one.
		

References

  • C. Caldwell and H. Dubner, "The near repunit primes 1(n-k-1)01(1k)," J. Recreational Math., 27 (1995) 35-41.
  • Heleen, J. P., "More near-repunit primes 1(n-k-1)D(1)1(k), D=2,3, ..., 9," J. Recreational Math., 29:3 (1998) 190-195.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[r = (10^n - 1)/9; Do[AppendTo[lst, DeleteCases[Select[FromDigits[Permutations[Append[IntegerDigits[r], d]]], PrimeQ], r]], {d, 0, 9}], {n, 2, 14}]; Sort[Flatten[lst]] (* Arkadiusz Wesolowski, Sep 20 2011 *)

A046413 Numbers k such that the repunit of length k (11...11, with k 1's) has exactly 2 prime factors.

Original entry on oeis.org

3, 4, 5, 7, 11, 17, 47, 59, 71, 139, 211, 251, 311, 347, 457, 461
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

347, 457, 461 and 701 are also terms. The only other possible terms up to 1000 are 263, 311, 509, 557, 617, 647 and 991; repunits of these lengths are known to be composite but the linked sources do not provide their factors. - Rick L. Shepherd, Mar 11 2003
The Yousuke Koide reference now shows the repunit of length 263 partially factored; 263 is no longer a possible candidate for this sequence. - Ray Chandler, Sep 06 2005
The repunit of length 263 has 3 prime factors; the repunit of length 617 has one known prime factor and a large composite. Possible terms > 1000 are 1117, 1213, 1259, 1291, 1373, 1447, 1607, 1637, 1663, 1669, 1759, 1823, 1949, 1987, 2063 & 2087. - Robert G. Wilson v, Apr 26 2010
All terms are either primes or squares of primes in A004023. In particular, the only composite below a million is 4. - Charles R Greathouse IV, Nov 21 2014
a(17) >= 509. The only confirmed term below 2500 is 701. As of July 2019, no factorization is known for the potential terms 509, 557, 647, 991, 1117, 1259, 1447, 1607, 1637, 1663, 1669, 1759, 1823, 1949, 1987, 2063, 2087, 2111, 2203, 2269, 2309, 2341, 2467, 2503, 2521, ... Unless the least prime factors of the respective composites have fewer than ~80 decimal digits and are thus accessible by massive ECM computations, there is no chance for an extension using current publicly available factorization methods. See links to factordb.com for the status of the factorization of the smallest unknown terms. - Hugo Pfoertner, Jul 30 2019

Examples

			7 is a term because 1111111 = 239*4649.
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.

Crossrefs

Cf. A000042, A004022 (repunit primes), A046053, A102782.

Programs

  • Mathematica
    Select[Range[60],PrimeOmega[FromDigits[PadRight[{},#,1]]]==2&] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Aug 26 2024 *)

Extensions

More terms from Rick L. Shepherd, Mar 11 2003
a(13)-a(16) from Robert G. Wilson v, Apr 26 2010

A196104 Repdigit semiprimes (semiprimes composed of identical digits).

Original entry on oeis.org

4, 6, 9, 22, 33, 55, 77, 111, 1111, 11111, 1111111, 11111111111, 11111111111111111, 2222222222222222222, 3333333333333333333, 5555555555555555555, 7777777777777777777, 22222222222222222222222, 33333333333333333333333, 55555555555555555555555
Offset: 1

Views

Author

Michel Lagneau, Oct 27 2011

Keywords

Comments

A semiprime can be repdigit (base 10) in only three ways. It can be a single-digit semiprime, a repunit semiprime (A102782), or a repunit prime times a prime digit {2, 3, 5, 7}. Occurs in proof that the sequence is infinite in which a(n) is the least semiprime > a(n-1) such that a(n) has no digit in common with a(n-1). - Jonathan Vos Post; corrected by Max Alekseyev, Sep 14 2022

Examples

			a(12) = 11111111111 = 21649 * 513239 is semiprime.
		

Crossrefs

Subsequence of A046328.
Except for initial terms, subsequence of A116063.

Programs

  • Maple
    with(numtheory):for n from 1 to 23 do:for b from 1 to 9 do:x:=(((10^n)- 1)/9)*b:if bigomega(x)=2 then printf(`%d, `,x):else fi:od:od:
  • Mathematica
    Select[FromDigits/@Flatten[Table[PadRight[{},i,n],{i,25},{n,9}],1], PrimeOmega[ #] ==2&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    print1("4, 6, 9");for(n=1,20,t=10^n\9;if(bigomega(t)==2,print1(", "t)); if(isprime(t),forprime(p=2,7,print1(", "p*t)))) \\ Charles R Greathouse IV, Oct 27 2011

Formula

Union of {4, 6, 9}, A102782, 2*A004022, 3*A004022, 5*A004022, and 7*A004022. - Jonathan Vos Post and R. J. Mathar, Oct 27 2011

Extensions

Edited by Max Alekseyev, Sep 14 2022

A102029 Smallest semiprime with Hamming weight n (i.e., smallest semiprime with exactly n ones when written in binary), or -1 if no such number exists.

Original entry on oeis.org

4, 6, 14, 15, 55, 95, 247, 447, 511, 1535, 2047, 7167, 12287, 32255, 49151, 98303, 196607, 393215, 983039, 1572863, 3145727, 6291455, 8388607, 33423359, 50331647, 117440511, 201326591, 528482303, 805306367, 1879048191, 3221225471
Offset: 1

Views

Author

Jonathan Vos Post, Jun 23 2007

Keywords

Comments

Semiprime analog of A061712. Extended by Stefan Steinerberger. Includes the subset Mersenne semiprimes A092561.

Examples

			a(1) = 4 because the first semiprime A001358(1) is 4 (base 10) which is written 100 in binary, the latter representation having exactly 1 one.
a(2) = 6 since A001358(2) = 6 = 110 (base 2) has exactly 2 ones.
a(4) = 15 since A001358(6) = 15 = 1111 (base 2) has exactly 4 ones and, as it also has no zeros, is the smallest of the Mersenne semiprimes.
		

Crossrefs

Programs

  • Mathematica
    Join[{4},Table[SelectFirst[Sort[FromDigits[#,2]&/@Permutations[ Join[ PadRight[{}, n,1],{0}]]],PrimeOmega[#]==2&],{n,2,40}]] (* Harvey P. Dale, Feb 06 2015 *)

A118694 Semiprimes which are divisible by the product of their digits.

Original entry on oeis.org

4, 6, 9, 15, 111, 115, 1111, 1115, 11111, 1111111, 1111117, 111111115, 1111113111, 1111711111, 11111111111, 111111111115, 1111111111113, 1111117111111, 11171111111111, 1111111111711111, 1111711111111111, 11111111111111111
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 20 2006

Keywords

Comments

The Mathematica coding is only good for multidigital, nonrepunits numbers. Obviously 4, 6 and 9 are members and so are A102782: Repunit semiprimes. - Robert G. Wilson v, Jun 10 2006

Examples

			115 is in the sequence because (1) it is a semiprime, (2) the product of its digits is 1*1*5=5 and (3) 115 is divisible by 5.
		

Crossrefs

Programs

  • Maple
    sp:= proc(n) evalb(2=add (i[2], i=ifactors(n) [2])) end: dp:= proc(n) local m; m:=n; 1; while m<>0 do %*irem(m, 10, 'm') od; % end: select(x-> irem(x, dp(x))=0 and sp(x), sort([{4, 6, 9, seq(seq(seq(parse(cat(1$(k-j), t, 1$j)), j=0..k), t=[1, 3, 5, 7]), k=1..20)} []]))[]; # Alois P. Heinz, Nov 17 2009
  • Mathematica
    lst = {}; Do[ p = Times @@ IntegerDigits@n; If[ PrimeQ@p && PrimeQ[n/p], AppendTo[lst, n]; Print[n]], {n, 275*10^6}]; lst (* Robert G. Wilson v, Jun 10 2006 *)
  • PARI
    A007954(n)= { local(resul,ncpy); if(n<10, return(n) ); ncpy=n; resul = ncpy % 10; ncpy = (ncpy - ncpy%10)/10; while( ncpy > 0, resul *= ncpy %10; ncpy = (ncpy - ncpy%10)/10; ); return(resul); } { for(n=4,50000000, if( bigomega(n)==2, dr=A007954(n); if(dr !=0 && n % dr == 0, print1(n,","); ); ); ); } \\ R. J. Mathar, May 23 2006

Formula

a(n) = A001358(k): A007954(a(n)) | a(n). - R. J. Mathar, May 23 2006

Extensions

More terms from R. J. Mathar, May 23 2006
a(12) from Robert G. Wilson v, Jun 10 2006
Further terms from Alois P. Heinz, Nov 17 2009

A361628 Sphenic numbers (products of 3 distinct primes) whose digits are primes.

Original entry on oeis.org

222, 255, 273, 322, 357, 555, 777, 2222, 2233, 2235, 2255, 2337, 2355, 2373, 2522, 2553, 2555, 2737, 2755, 3237, 3322, 3333, 3335, 3355, 3522, 3535, 3553, 3723, 5222, 5235, 5253, 5322, 5335, 5522, 5523, 5555, 5727, 5735, 5757, 7222, 7257, 7322, 7337, 7527, 7535, 7553, 7557
Offset: 1

Views

Author

Massimo Kofler, Mar 18 2023

Keywords

Crossrefs

Intersection of A046034 and A007304.
Cf. A102782.

Programs

  • Mathematica
    Select[Flatten@ Table[FromDigits /@ Tuples[Prime[Range[4]], n], {n, 3, 4}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Mar 18 2023 *)
  • PARI
    isok(k) = (omega(k)==3) && (bigomega(k)==3) && !#select(x->!isprime(x), digits(k)); \\ Michel Marcus, Mar 21 2023
Showing 1-6 of 6 results.