A004022 Primes of the form (10^k - 1)/9. Also called repunit primes or repdigit primes.
11, 1111111111111111111, 11111111111111111111111
Offset: 1
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 11. Graham, Knuth and Patashnik, Concrete mathematics, Addison-Wesley, 1994; see p. 146, problem 22.
- M. Barsanti, R. Dvornicich, M. Forti, T. Franzoni, M. Gobbino, S. Mortola, L. Pernazza and R. Romito, Il Fibonacci N. 8 (included in Il Fibonacci, Unione Matematica Italiana, 2011), 2004, Problem 8.10.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 114.
Links
- T. D. Noe, Table of n, a(n) for n = 1..5
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See p. 18.
- Makoto Kamada, Factorizations of 11...11 (Repunit).
- D. H. Lehmer, On the number (10^23-1)/9, Bull. Amer. Math. Soc. 35 (1929), 349-350.
- James Maynard and Brady Haran, Primes without a 7, Numberphile video (2019)
- Andy Steward, Prime Generalized Repunits
- S. S. Wagstaff, Jr., The Cunningham Project
- Index to entries for primes with digits in a given set.
Crossrefs
Subsequence of A020449.
A116692 is another version of repunit primes or repdigit primes. - N. J. A. Sloane, Jan 22 2023
See A004023 for the number of 1's.
Cf. A046413.
Programs
-
Magma
[a: n in [0..300] | IsPrime(a) where a is (10^n - 1) div 9 ]; // Vincenzo Librandi, Nov 08 2014
-
Mathematica
lst={}; Do[If[PrimeQ[p = (10^n - 1)/9], AppendTo[lst, p]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 22 2008 *) Select[Table[(10^n - 1) / 9, {n, 500}], PrimeQ] (* Vincenzo Librandi, Nov 08 2014 *) Select[Table[FromDigits[PadRight[{},n,1]],{n,30}],PrimeQ] (* Harvey P. Dale, Apr 07 2018 *)
-
PARI
forprime(x=2,20000,if(ispseudoprime((10^x-1)/9),print1((10^x-1)/9","))) \\ Cino Hilliard, Dec 23 2008
-
Python
from sympy import isprime from itertools import count, islice def agen(): # generator of terms yield from (t for t in (int("1"*k) for k in count(1)) if isprime(t)) print(list(islice(agen(), 4))) # Michael S. Branicky, Jun 09 2022
Extensions
Edited by Max Alekseyev, Nov 15 2010
Name expanded by N. J. A. Sloane, Jan 22 2023
Comments