cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A239660 Triangle read by rows in which row n lists two copies of the n-th row of triangle A237593.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6
Offset: 1

Views

Author

Omar E. Pol, Mar 24 2014

Keywords

Comments

For the construction of this sequence also we can start from A235791.
This sequence can be interpreted as an infinite Dyck path: UDUDUUDD...
Also we use this sequence for the construction of a spiral in which the arms in the quadrants give the symmetric representation of sigma, see example.
We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
The spiral has the property that the sum of the parts in the quadrants 1 and 3, divided by the sum of the parts in the quadrants 2 and 4, converges to 3/5. - Omar E. Pol, Jun 10 2019

Examples

			Triangle begins (first 15.5 rows):
1, 1, 1, 1;
2, 2, 2, 2;
2, 1, 1, 2, 2, 1, 1, 2;
3, 1, 1, 3, 3, 1, 1, 3;
3, 2, 2, 3, 3, 2, 2, 3;
4, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 4;
4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4;
5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5;
5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5;
6, 2, 1, 1, 1, 1, 2, 6, 6, 2, 1, 1, 1, 1, 2, 6;
6, 3, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1, 3, 6;
7, 2, 2, 1, 1, 2, 2, 7, 7, 2, 2, 1, 1, 2, 2, 7;
7, 3, 2, 1, 1, 2, 3, 7, 7, 3, 2, 1, 1, 2, 3, 7;
8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 1, 2, 2, 1, 3, 8;
8, 3, 2, 1, 1, 1, 1, 2, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
9, 3, 2, 1, 1, 1, 1, 2, 3, 9, ...
.
Illustration of initial terms as an infinite Dyck path (row n = 1..4):
.
.                            /\/\    /\/\
.       /\  /\  /\/\  /\/\  /    \  /    \
.  /\/\/  \/  \/    \/    \/      \/      \
.
.
Illustration of initial terms for the construction of a spiral related to sigma:
.
.  row 1     row 2          row 3           row 4
.                                          _ _ _
.                                               |_
.             _ _                                 |
.   _ _      |                                    |
.  |   |     |                                    |
.            |         |           |              |
.            |_ _      |_         _|              |
.                        |_ _ _ _|               _|
.                                          _ _ _|
.
.[1,1,1,1] [2,2,2,2] [2,1,1,2,2,1,1,2] [3,1,1,3,3,1,1,3]
.
The first 2*A003056(n) terms of the n-th row are represented in the A010883(n-1) quadrant and the last 2*A003056(n) terms of the n-th row are represented in the A010883(n) quadrant.
.
Illustration of the spiral constructed with the first 15.5 rows of triangle:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.                _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |      _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |   12 _ _ _ _          |_  |         | |
.     | |     |  _ _|    _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|    _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |    _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                     15|      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|    _| |
.        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.             |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                             28|  _ _|
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains A237590(16) = 27 parts.
The total area (also the total number of cells) in the n-th arm of the spiral is equal to sigma(n) = A000203(n), considering every quadrant and the axes x and y. (checked by hand up to row n = 128). The parts of the spiral are in A237270: 1, 3, 2, 2, 7...
Diagram extended by _Omar E. Pol_, Aug 23 2018
		

Crossrefs

Row n has length 4*A003056(n).
The sum of row n is equal to 4*n = A008586(n).
Row n is a palindromic composition of 4*n = A008586(n).
Both column 1 and right border are A008619, n >= 1.
The connection between A196020 and A237270 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> this sequence --> A237270.

A239931 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(4n-3).

Original entry on oeis.org

1, 3, 3, 5, 3, 5, 7, 7, 9, 9, 11, 5, 5, 11, 13, 5, 13, 15, 15, 17, 7, 7, 17, 19, 19, 21, 21, 23, 32, 23, 25, 7, 25, 27, 27, 29, 11, 11, 29, 31, 31, 33, 9, 9, 33, 35, 13, 13, 35, 37, 37, 39, 18, 39, 41, 15, 9, 15, 41, 43, 11, 11, 43, 45, 45, 47, 17, 17, 47, 49, 49, 51, 51, 53, 43, 43, 53, 55, 55, 57, 57, 59, 21, 22, 21, 59, 61, 11, 61, 63, 15, 15, 63
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2014

Keywords

Comments

Row n is a palindromic composition of sigma(4n-3).
Row n is also the row 4n-3 of A237270.
Row n has length A237271(4n-3).
Row sums give A112610.
Also row n lists the parts of the symmetric representation of sigma in the n-th arm of the first quadrant of the spiral described in A239660, see example.
For the parts of the symmetric representation of sigma(4n-2), see A239932.
For the parts of the symmetric representation of sigma(4n-1), see A239933.
For the parts of the symmetric representation of sigma(4n), see A239934.
We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016

Examples

			The irregular triangle begins:
   1;
   3,  3;
   5,  3,  5;
   7,  7;
   9,  9;
  11,  5,  5, 11;
  13,  5, 13;
  15, 15;
  17,  7,  7, 17;
  19, 19;
  21, 21;
  23, 32, 23;
  25,  7, 25;
  27, 27;
  29, 11, 11, 29;
  31, 31;
  ...
Illustration of initial terms in the first quadrant of the spiral described in A239660:
.
.     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 15
.    |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.                                  |
.                                  |
.     _ _ _ _ _ _ _ _ _ _ _ _ _ 13 |
.    |_ _ _ _ _ _ _ _ _ _ _ _ _|   |
.                              |   |_ _ _
.                              |         |
.     _ _ _ _ _ _ _ _ _ _ _ 11 |         |_
.    |_ _ _ _ _ _ _ _ _ _ _|   |_ _ _      |_
.                          |         |_ _ 5  |_
.                          |         |_  |_    |_ _
.     _ _ _ _ _ _ _ _ _ 9  |_ _ _      |_  |       |
.    |_ _ _ _ _ _ _ _ _|   |_ _  |_ 5    |_|_      |
.                      |       |_ _|_ 5      |     |_ _ _ _ _ _ 15
.                      |           | |_      |               | |
.     _ _ _ _ _ _ _ 7  |_ _        |_  |     |_ _ _ _ _ 13   | |
.    |_ _ _ _ _ _ _|       |_        | |             | |     | |
.                  |         |_      |_|_ _ _ _ 11   | |     | |
.                  |_ _        |             | |     | |     | |
.     _ _ _ _ _ 5      |_      |_ _ _ _ 9    | |     | |     | |
.    |_ _ _ _ _|         |           | |     | |     | |     | |
.              |_ _ 3    |_ _ _ 7    | |     | |     | |     | |
.              |_  |         | |     | |     | |     | |     | |
.     _ _ _ 3    |_|_ _ 5    | |     | |     | |     | |     | |
.    |_ _ _|         | |     | |     | |     | |     | |     | |
.          |_ _ 3    | |     | |     | |     | |     | |     | |
.            | |     | |     | |     | |     | |     | |     | |
.     _ 1    | |     | |     | |     | |     | |     | |     | |
.    |_|     |_|     |_|     |_|     |_|     |_|     |_|     |_|
.
For n = 7 we have that 4*7-3 = 25 and the 25th row of A237593 is [13, 5, 3, 1, 2, 1, 1, 2, 1, 3, 5, 13] and the 24th row of A237593 is [13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13] therefore between both Dyck paths there are three regions (or parts) of sizes [13, 5, 13], so row 7 is [13, 5, 13].
The sum of divisors of 25 is 1 + 5 + 25 = A000203(25) = 31. On the other hand the sum of the parts of the symmetric representation of sigma(25) is 13 + 5 + 13 = 31, equaling the sum of divisors of 25.
		

Crossrefs

A239050 a(n) = 4*sigma(n).

Original entry on oeis.org

4, 12, 16, 28, 24, 48, 32, 60, 52, 72, 48, 112, 56, 96, 96, 124, 72, 156, 80, 168, 128, 144, 96, 240, 124, 168, 160, 224, 120, 288, 128, 252, 192, 216, 192, 364, 152, 240, 224, 360, 168, 384, 176, 336, 312, 288, 192, 496, 228, 372, 288, 392, 216, 480, 288, 480, 320, 360, 240, 672, 248, 384, 416, 508
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

4 times the sum of divisors of n.
a(n) is also the total number of horizontal cells in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every three-dimensional quadrant arises after the 90-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a square formed by four cells (see links and examples). - Omar E. Pol, Jul 04 2016

Examples

			For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.
For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.
.
Illustration of initial terms:                                    _ _ _ _ _ _
.                                           _ _ _ _ _ _          |_|_|_|_|_|_|
.                           _ _ _ _       _|_|_|_|_|_|_|_     _ _|           |_ _
.             _ _ _ _     _|_|_|_|_|_    |_|_|       |_|_|   |_|               |_|
.     _ _    |_|_|_|_|   |_|       |_|   |_|           |_|   |_|               |_|
.    |_|_|   |_|   |_|   |_|       |_|   |_|           |_|   |_|               |_|
.    |_|_|   |_|_ _|_|   |_|       |_|   |_|           |_|   |_|               |_|
.            |_|_|_|_|   |_|_ _ _ _|_|   |_|_         _|_|   |_|               |_|
.                          |_|_|_|_|     |_|_|_ _ _ _|_|_|   |_|_             _|_|
.                                          |_|_|_|_|_|_|         |_ _ _ _ _ _|
.                                                                |_|_|_|_|_|_|
.
n:     1          2             3                4                     5
S(n):  1          3             4                7                     6
a(n):  4         12            16               28                    24
.
For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.
The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - _Omar E. Pol_, Jul 04 2016
		

Crossrefs

Alternating row sums of A239662.
Partial sums give A243980.
k times sigma(n), k=1..6: A000203, A074400, A272027, this sequence, A274535, A274536.
k times sigma(n), k = 1..10: A000203, A074400, A272027, this sequence, A274535, A274536, A319527, A319528, A325299, A326122.

Programs

  • Magma
    [4*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jul 30 2019
  • Maple
    with(numtheory): seq(4*sigma(n), n=1..64); # Omar E. Pol, Jul 04 2016
  • Mathematica
    Array[4 DivisorSigma[1, #] &, 64] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    a(n) = 4 * sigma(n); \\ Omar E. Pol, Jul 04 2016
    

Formula

a(n) = 4*A000203(n) = 2*A074400(n).
a(n) = A000203(n) + A272027(n). - Omar E. Pol, Jul 04 2016
Dirichlet g.f.: 4*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
Conjecture: a(n) = sigma(3*n) = A144613(n) iff n is not a multiple of 3. - Omar E. Pol, Oct 02 2018
The conjecture above is correct. Write n = 3^e*m, gcd(3, m) = 1, then sigma(3*n) = sigma(3^(e+1))*sigma(m) = ((3^(e+2) - 1)/2)*sigma(m) = ((3^(e+2) - 1)/(3^(e+1) - 1))*sigma(3^e*m), and (3^(e+2) - 1)/(3^(e+1) - 1) = 4 if and only if e = 0. - Jianing Song, Feb 03 2019

A097057 Number of integer solutions to a^2 + b^2 + 2*c^2 + 2*d^2 = n.

Original entry on oeis.org

1, 4, 8, 16, 24, 24, 32, 32, 24, 52, 48, 48, 96, 56, 64, 96, 24, 72, 104, 80, 144, 128, 96, 96, 96, 124, 112, 160, 192, 120, 192, 128, 24, 192, 144, 192, 312, 152, 160, 224, 144, 168, 256, 176, 288, 312, 192, 192, 96, 228, 248, 288, 336, 216, 320, 288, 192, 320, 240, 240
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2004

Keywords

Comments

a^2 + b^2 + 2*c^2 + 2*d^2 is another (cf. A000118) of Ramanujan's 54 universal quaternary quadratic forms. - Michael Somos, Apr 01 2008

Examples

			1 + 4*q + 8*q^2 + 16*q^3 + 24*q^4 + 24*q^5 + 32*q^6 + 32*q^7 + 24*q^8 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 31.
  • Jesse Ira Deutsch, Bumby's technique and a result of Liouville on a quadratic form, Integers 8 (2008), no. 2, A2, 20 pp. MR2438287 (2009g:11047).
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.29).
  • S. Ramanujan, Collected Papers, Chap. 20, Cambridge Univ. Press 1927 (Proceedings of the Camb. Phil. Soc., 19 (1917), 11-21).

Crossrefs

a^2 + b^2 + 2*c^2 + m*d^2 = n: this sequence (m=2), A320124 (m=3), A320125 (m=4), A320126 (m=5), A320127 (m=6), A320128 (m=7), A320130 (m=8), A320131 (m=9), A320132 (m=10), A320133 (m=11), A320134 (m=12), A320135 (m=13), A320136 (m=14).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2])^2, {q, 0, n}] (* Michael Somos, Jul 05 2011 *)
    f[p_, e_] := (p^(e+1)-1)/(p-1); f[2, 1] = 2; f[2, e_] := 6; a[0] = 1; a[1] = 4; a[n_] := 4 * Times @@ f @@@ FactorInteger[n]; Array[a, 100, 0] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    {a(n) = local(t); if( n<1, n>=0, t = 2^valuation( n, 2); 4 * sigma(n/t) * if( t>2, 6, t))} \\ Michael Somos, Sep 17 2004
    
  • PARI
    {a(n) = local(A = x * O(x^n)); polcoeff( (eta(x^2 + A) * eta(x^4 + A))^6 / (eta(x + A) * eta(x^8 + A))^4, n)} \\ Michael Somos, Sep 17 2004
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 2, 0; 0, 0, 0, 2], n)[n])} \\ Michael Somos, Oct 29 2005
    
  • PARI
    A097057(n)=if(n,sigma(n>>n=valuation(n,2))*if(n>1,24,4<M. F. Hasler, May 07 2018

Formula

Euler transform of period 8 sequence [4, -2, 4, -8, 4, -2, 4, -4, ...]. - Michael Somos, Sep 17 2004
Multiplicative with a(n) = 4*b(n), b(2) = 2, b(2^e) = 6 if e > 1, b(p^e) = (p^(e+1) - 1) / (p - 1) if p > 2. - Michael Somos, Sep 17 2004
Expansion of (eta(q^2) * eta(q^4))^6 / (eta(q) * eta(q^8))^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 05 2011
G.f.: (theta_3(q) * theta_3(q^2))^2.
G.f.: Product_{k>0} ((1-x^(2k))(1-x^(4k)))^6/((1-x^k)(1-x^(8k)))^4.
G.f.: 1 + Sum_{k>0} 8 * x^(4*k) / (1 + x^(4*k))^2 + 4 * x^(2*k-1) / (1 - x^(2*k-1))^2 = 1 + Sum_{k>0} (2 + (-1)^k) * 4*k * x^(2*k) / (1 + x^(2*k)) + 4*(2*k - 1) * x^(2*k-1) / (1 - x^(2*k - 1)). - Michael Somos, Oct 22 2005
a(2*n) = A000118(n). a(2*n + 1) = 4 * A008438(n). a(4*n) = A004011(n). a(4*n + 1) = 4 * A112610(n). a(4*n + 2) = 8 * A008438(n). a(4*n + 3) = 16 * A097723(n). - Michael Somos, Jul 05 2011

Extensions

Added keyword mult and minor edits by M. F. Hasler, May 07 2018

A109506 Expansion of (1 - phi(-q)^4)/ 8 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 4, -3, 6, -12, 8, -3, 13, -18, 12, -12, 14, -24, 24, -3, 18, -39, 20, -18, 32, -36, 24, -12, 31, -42, 40, -24, 30, -72, 32, -3, 48, -54, 48, -39, 38, -60, 56, -18, 42, -96, 44, -36, 78, -72, 48, -12, 57, -93, 72, -42, 54, -120, 72, -24, 80, -90, 60, -72, 62, -96, 104, -3, 84, -144, 68, -54, 96, -144, 72
Offset: 1

Views

Author

Michael Somos, Jun 30 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by xi(n) in Glaisher 1907. - Michael Somos, May 17 2013

Examples

			q - 3*q^2 + 4*q^3 - 3*q^4 + 6*q^5 - 12*q^6 + 8*q^7 - 3*q^8 + 13*q^9 + ...
		

References

  • G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 346 Exercise XXI(18). MR0121327 (22 #12066).
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 8).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n Sum[ If[ Mod[ d, 4] == 0, 0, d], {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, if( d%4, d)))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, A = x * O(x^n); -1/8 * polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))}

Formula

Expansion of (1 - eta(q)^8 / eta(q^2)^4) / 8 in powers of q.
a(n) = Sum_{d divides n} (-1)^(n/d + d) * d [Glaisher].
Multiplicative with a(2^e) = -3, if e>0. a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f.: Sum_{k>0} k * (x^k / (1 - x^k) - 6 * x^(2*k) / (1 - x^(2*k)) + 8 * x^(4*k) / (1 - x^(4*k))).
G.f.: Sum_{k>0} -(-x)^k / (1 + x^k)^2 = Sum_{k>0} - k * (-x)^k / (1 + x^k).
a(n) = -(-1)^n * A046897(n). a(n) = -A096727(n) / 8 unless n=0. a(2*n) = -3 * A000593(n). a(2*n + 1) = A008438(n). a(4*n + 1) = A112610(n). a(4*n + 3) = A097723(n).
Dirichlet g.f.: (1 - 1/2^(s-2)) * (1 - 1/2^(s-1)) * zeta(s-1) * zeta(s). - Amiram Eldar, Sep 12 2023

A239052 Sum of divisors of 4*n-2.

Original entry on oeis.org

3, 12, 18, 24, 39, 36, 42, 72, 54, 60, 96, 72, 93, 120, 90, 96, 144, 144, 114, 168, 126, 132, 234, 144, 171, 216, 162, 216, 240, 180, 186, 312, 252, 204, 288, 216, 222, 372, 288, 240, 363, 252, 324, 360, 270, 336, 384, 360, 294, 468, 306, 312, 576
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A062731 (odd part).
a(n) is also the total number of cells in the n-th branch of the second quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-2). For the quadrants 1, 3, 4 see A112610, A239053, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270, see example.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016

Examples

			Illustration of initial terms:
------------------------------------------------------
.        Branches of the spiral
.        in the second quadrant             n    a(n)
------------------------------------------------------
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|         4     24
.                 | |
.             12 _| |
.               |_ _|  _ _ _ _ _ _
.         12 _ _|     |  _ _ _ _ _|         3     18
.      _ _ _| |    9 _| |
.     |  _ _ _|  9 _|_ _|
.     | |      _ _| |      _ _ _ _
.     | |     |  _ _| 12 _|  _ _ _|         2     12
.     | |     | |      _|   |
.     | |     | |     |  _ _|
.     | |     | |     | |    3 _ _
.     | |     | |     | |     |  _|         1      3
.     |_|     |_|     |_|     |_|
.
For n = 4 the sum of divisors of 4*n-2 is 1 + 2 + 7 + 14 = A000203(14) = 24. On the other hand the parts of the symmetric representation of sigma(14) are [12, 12] and the sum of them is 12 + 12 = 24, equaling the sum of divisors of 14, so a(4) = 24.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 4*n - 2]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)

Formula

a(n) = A000203(4n-2) = A000203(A016825(n-1)).
a(n) = 3*A008438(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (3*Pi^2/8) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A239053 Sum of divisors of 4*n-1.

Original entry on oeis.org

4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A008438.
a(n) is also the total number of cells in the n-th branch of the third quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-1), see example. For the quadrants 1, 2, 4 see A112610, A239052, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270.
We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016

Examples

			Illustration of initial terms:
-----------------------------------------------------
.        Branches of the spiral
.        in the third quadrant             n    a(n)
-----------------------------------------------------
.     _       _       _       _
.    | |     | |     | |     | |
.    | |     | |     | |     |_|_ _
.    | |     | |     | |    2  |_ _|       1      4
.    | |     | |     |_|_     2
.    | |     | |    4    |_
.    | |     |_|_ _        |_ _ _ _
.    | |    6      |_      |_ _ _ _|       2      8
.    |_|_ _ _        |_   4
.   8      | |_ _      |
.          |_    |     |_ _ _ _ _ _
.            |_  |_    |_ _ _ _ _ _|       3     12
.           8  |_ _|  6
.                  |
.                  |_ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _|       4     24
.                 8
.
For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
		

Crossrefs

Programs

Formula

a(n) = A000203(4n-1) = A000203(A004767(n-1)).
a(n) = 4*A097723(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (Pi^2/4) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A121613 Expansion of psi(-x)^4 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 6, -8, 13, -12, 14, -24, 18, -20, 32, -24, 31, -40, 30, -32, 48, -48, 38, -56, 42, -44, 78, -48, 57, -72, 54, -72, 80, -60, 62, -104, 84, -68, 96, -72, 74, -124, 96, -80, 121, -84, 108, -120, 90, -112, 128, -120, 98, -156, 102, -104, 192, -108, 110
Offset: 0

Views

Author

Michael Somos, Aug 10 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 33 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 4*x + 6*x^2 - 8*x^3 + 13*x^4 - 12*x^5 + 14*x^6 - 24*x^7 + ...
G.f. = q - 4*q^3 + 6*q^5 - 8*q^7 + 13*q^9 - 12*q^11 + 14*q^13 - 24*q^15 + ...
		

References

  • J. W. L. Glaisher, Notes on Certain Formulae in Jacobi's Fundamenta Nova, Messenger of Mathematics, 5 (1876), pp. 174-179. see p.179
  • Hardy, et al., Collected Papers of Srinivasa Ramanujan, p. 326, Question 359.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(16), 2), 110); A[2] - 4*A[4]; /* Michael Somos, Jun 10 2015 */
  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[(1 - m) m ] (EllipticK[m] 2/Pi)^2 / (4 q^(1/2)), {q, 0, n}]]; (* Michael Somos, Jun 22 2012 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q] QPochhammer[ q^4] / QPochhammer[ q^2])^4, {q, 0, n}]; (* Michael Somos, Oct 14 2013 *)
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSigma[1, 2 n + 1]]; (* Michael Somos, Jun 15 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sigma(2*n + 1))};
    
  • Sage
    A = ModularForms( Gamma0(16), 2, prec=110).basis(); A[1] - 4*A[3]; # Michael Somos, Jun 27 2013
    

Formula

Expansion of q^(-1/2) * (eta(q) * eta(q^4) / eta(q^2))^4 in powers of q.
Expansion of q^(-1/2)/4 * k * k' * (K / (Pi/2))^2 in powers of q where k, k', K are Jacobi elliptic functions. - Michael Somos, Jun 22 2012
Euler transform of period 4 sequence [ -4, 0, -4, -4, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^n, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1 (mod 4), b(p^e) = (-1)^e * (p^(e+1) - 1) / (p - 1) if p == 3 (mod 4).
Given g.f. A(x), then B(x) = 4 * Integral_{0..x} A(x^2) dx = arcsin(4 * x * A001938(x^2)) satisfies 0 = f(B(x), B(x^3)) where f(u, v) = sin(u + v) / 2 - sin((u - v) / 2). - Michael Somos, Oct 14 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 27 2013
G.f.: (Product_{k>0} (1 - x^k) / (1 - x^(4*k - 2)))^4.
G.f.: Sum_{k>0} -(-1)^k * (2*k - 1) * x^(k - 1) / (1 + x^(2*k - 1)).
G.f.: (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(4*k)))^4.
G.f.: (Sum_{k>0} (-1)^floor(k/2) * x^((k^2 - k)/2))^4.
G.f.: Sum_{k>0} (-1)^k * (2*k - 1) * x^(2*k - 1) / (1 + x^(4*k - 2)).
a(n) = (-1)^n * A008438(n). a(2*n) = A112610(n). a(2*n + 1) = -4 * A097723(n).
Convolution square of A134343. - Michael Somos, Jun 20 2012
a(3*n + 2) = 6 * A258831(n). a(4*n + 3) = -8 * A258835(n). - Michael Somos, Jun 11 2015

A133690 Expansion of (phi(-q) * phi(q^2))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 8, -16, 24, -24, 32, -32, 24, -52, 48, -48, 96, -56, 64, -96, 24, -72, 104, -80, 144, -128, 96, -96, 96, -124, 112, -160, 192, -120, 192, -128, 24, -192, 144, -192, 312, -152, 160, -224, 144, -168, 256, -176, 288, -312, 192, -192, 96, -228, 248, -288
Offset: 0

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q + 8*q^2 - 16*q^3 + 24*q^4 - 24*q^5 + 32*q^6 - 32*q^7 + 24*q^8 - ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -4 Which[ OddQ[n], DivisorSigma[ 1, n], Mod[n, 4] > 0, -2 DivisorSigma[1, n/2], True, -6 DivisorSum[n/4, # Mod[#, 2] &]]]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -4 * if( n%2, sigma(n), n%4, -2 * sigma(n/2), -6 * sumdiv( n/4, d, (d%2)*d )))};
    
  • PARI
    {a(n) = local(A); if ( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A)^5 / (eta(x^2 + A)^3 * eta(x^8 + A)^2))^2, n))};

Formula

Expansion of (eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ -4, 2, -4, -8, -4, 2, -4, -4, ...].
a(n) = -4 * b(n) where b() is multiplicative with b(2) = -2, b(2^e) = -6 if e>1, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 32 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133657.
G.f.: ( Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k))^3 / (1 + x^(4*k))^2 )^2.
a(n) = (-1)^n * A097057(n). Convolution square of A133692.
a(2*n) = 8 * A046897(n) unless n=0. a(2*n + 1) = A008438(n). a(4*n) = A004011(n). a(4*n + 1) = -4 * A112610(n). a(4*n + 3) = -16 * A097723(n).

A240020 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(2n-1).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 3, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 5, 5, 11, 12, 12, 13, 5, 13, 14, 6, 6, 14, 15, 15, 16, 16, 17, 7, 7, 17, 18, 12, 18, 19, 19, 20, 8, 8, 20, 21, 21, 22, 22, 23, 32, 23, 24, 24, 25, 7, 25, 26, 10, 10, 26, 27, 27, 28, 8, 8, 28, 29, 11, 11, 29, 30, 30, 31, 31, 32, 12, 26, 12, 32, 33, 9, 9, 33, 34, 34
Offset: 1

Views

Author

Omar E. Pol, Mar 31 2014

Keywords

Comments

Row n lists the parts of the symmetric representation of A008438(n-1).
Also these are the parts from the odd-indexed rows of A237270.
Also these are the parts in the quadrants 1 and 3 of the spiral described in A239660, see example.
Row sums give A008438.
The length of row n is A237271(2n-1).
Both column 1 and the right border are equal to n.
Note that also the sequence can be represented in a quadrant.
We can find the spiral (mentioned above) on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016

Examples

			1;
2, 2;
3, 3;
4, 4;
5, 3, 5;
6, 6;
7, 7;
8, 8, 8;
9, 9;
10, 10;
11, 5, 5, 11;
12, 12;
13, 5, 13;
14, 6, 6, 14;
15, 15;
16, 16;
17, 7, 7, 17;
18, 12, 18;
19, 19;
20, 8, 8, 20;
21, 21;
22, 22;
23, 32, 23;
24, 24;
25, 7, 25;
...
Illustration of initial terms (rows 1..8):
.
.                                   _ _ _ _ _ _ _ 7
.                                  |_ _ _ _ _ _ _|
.                                                |
.                                                |_ _
.                                   _ _ _ _ _ 5      |_
.                                  |_ _ _ _ _|         |
.                                            |_ _ 3    |_ _ _ 7
.                                            |_  |         | |
.                                   _ _ _ 3    |_|_ _ 5    | |
.                                  |_ _ _|         | |     | |
.                                        |_ _ 3    | |     | |
.                                          | |     | |     | |
.                                   _ 1    | |     | |     | |
.     _       _       _       _    |_|     |_|     |_|     |_|
.    | |     | |     | |     | |
.    | |     | |     | |     |_|_ _
.    | |     | |     | |    2  |_ _|
.    | |     | |     |_|_     2
.    | |     | |    4    |_
.    | |     |_|_ _        |_ _ _ _
.    | |    6      |_      |_ _ _ _|
.    |_|_ _ _        |_   4
.   8      | |_ _      |
.          |_    |     |_ _ _ _ _ _
.            |_  |_    |_ _ _ _ _ _|
.           8  |_ _|  6
.                  |
.                  |_ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _|
.                 8
.
The figure shows the quadrants 1 and 3 of the spiral described in A239660.
For n = 5 we have that 2*5 - 1 = 9 and the 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5], so row 5 is [5, 3, 5], see the third arm of the spiral in the first quadrant.
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the sum of the parts of the symmetric representation of sigma(9) is 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
		

Crossrefs

Showing 1-10 of 16 results. Next