cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A133872 Period 4: repeat [1, 1, 0, 0].

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Partial sums of A056594.
Let i=sqrt(-1) and S(n) = Sum_{k=0..n-1} exp(2*Pi*i*k^2/n) for n>=1 the famous Gauss sum. Then S(n) = (a(n)+a(n+1)*i)*sqrt(n). - Franz Vrabec, Nov 08 2007
a(A042948(n)) = 1; a(A042964(n)) = 0. - Reinhard Zumkeller, Oct 03 2008
a(n) is also the real part of partial sum of powers of the complex unit i. - Enrique Pérez Herrero, Aug 16 2009
Periodic sequences having a period of 2k and composed of k ones followed by k zeros have a closed formula of floor(((n+k) mod 2k)/k). Listed sequences of this form are: k=1..A000035(n+1), k=2..A133872(n), k=3..A088911, k=4..A131078(n), k=5..A112713(n-1). - Gary Detlefs, May 17 2011
0.repeat(0,0,1,1) is 1/5 in base 2, due to 1/5 = (3/16)/(1-1/16). For the general case see 1/A062158(n) in base n >= 2. Here n = 2. - Wolfdieter Lang, Jun 20 2014
a(n) (for n>=1) is the determinant of the n X n Toeplitz matrix M satisfying: M(i,j)=1 if -1<=j-i<=2 and 0 otherwise. - Dmitry Efimov, Jun 23 2015
a(n) (for n>=1) is the difference between numbers of even and odd permutations p of 1,2,...,n such that -1 <= p(i)-i <= 2 for i=1,2,...,n. - Dmitry Efimov, Jan 08 2016
The binomial transform is 1, 2, 3, 4, 6, 12,... (see A038504). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = 1 + x + x^4 + x^5 + x^8 + x^9 + x^12 + x^13 + x^16 + x^17 + x^20 + ...
		

Crossrefs

Programs

Formula

a(n) = (1 + floor(n/2)) mod 2.
a(n) = A004526(A000035(n+2)).
a(n) = 1 + floor(n/2) - 2*floor((n+2)/4).
a(n) = (((n+2) mod 4) - (n mod 2))/2.
a(n) = ((n + 2 - (n mod 2))/2) mod 2.
a(n) = ((2*n + 3 + (-1)^n)/4) mod 2.
a(n) = (1 + (-1)^((2*n - 1 + (-1)^n)/4))/2.
a(n) = binomial(n+2, n) mod 2 = binomial(n+2, 2) mod 2.
a(n) = A000217(n+1) mod 2.
G.f.: (1+x)/(1-x^4) = 1/((1-x)(1+x^2)).
a(n) = 1/2 + (1/2)*cos(Pi*n/2) + (1/2)*sin(Pi*n/2). a(n) = A021913(n+2). - R. J. Mathar, Nov 15 2007
From Jaume Oliver Lafont, Dec 05 2008: (Start)
a(n) = 1/2 + sin((2n+1)Pi/4)/sqrt(2).
a(n) = 1/2 + cos((2n-1)Pi/4)/sqrt(2). (End)
a(n) = Re(Sum_{k=0..n} i^k), where i=sqrt(-1) and Re is the real part of a complex number. a(n) = (1/2)*((Sum_{k=0..n} i^k) + Sum_{k=0..n} i^-k) = Re((1/2)*(1 + i)*(1 - i^(n+1))). - Enrique Pérez Herrero, Aug 16 2009
a(n) = (1 + i^(n*(n-1)))/2, where i=sqrt(-1). - Bruno Berselli, May 18 2011
a(n) = (Sum_{k=1..n} k^j) mod 2, for any j. - Gary Detlefs, Dec 28 2011
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2. - Jean-Christophe Hervé, May 01 2013
a(n) = 1 - floor(n/2) + 2*floor(n/4) = 1 - A004526(n) + A122461(n). - Wesley Ivan Hurt, Dec 06 2013
a(n) = (1 + (-1)^floor(n/2))/2. - Wesley Ivan Hurt, Apr 17 2014
a(n) = A054925(n+2) - A011848(n+2). - Wesley Ivan Hurt, Jun 09 2014
Euler transform of length 4 sequence [1, -1, 0, 1]. - Michael Somos, Sep 26 2014
a(n) = a(1-n) for all n in Z. - Michael Somos, Sep 26 2014
From Ilya Gutkovskiy, Jul 09 2016: (Start)
Inverse binomial transform of A038504(n+1).
E.g.f.: (exp(x) + sin(x) + cos(x))/2. (End)
a(n) = (1 + (-1)^(n*(n-1)/2))/2. - Guenther Schrack, Apr 04 2019

Extensions

Definition rewritten by N. J. A. Sloane, Apr 30 2009

A088911 Period 6: repeat [1, 1, 1, 0, 0, 0].

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Oct 22 2003

Keywords

Comments

For periodic sequences having a period of 2*k and composed of k ones followed by k zeros we have a(n) = floor(((n+k) mod 2*k)/k). Sequences of this form are A000035(n+1) (k=1), A133872(n) (k=2), this sequence (k=3), A131078(n) (k=4), and A112713(n-1) (k=5). - Gary Detlefs, May 17 2011

Crossrefs

Programs

  • Magma
    &cat [[1, 1, 1, 0, 0, 0]^^30]; // Wesley Ivan Hurt, Jul 05 2016
    
  • Maple
    seq(op([1, 1, 1, 0, 0, 0]), n=0..40); # Wesley Ivan Hurt, Jul 05 2016
  • Mathematica
    CoefficientList[Series[(1 + x + x^2)/(1 - x^6), {x, 0, 50}], x]
    Flatten[Table[{1,1,1,0,0,0},{20}]] (* Harvey P. Dale, Jul 17 2011 *)
  • PARI
    a(n)=n%6<3 \\ Jaume Oliver Lafont, Mar 17 2009
    
  • Python
    def A088911(n): return int(n % 6 < 3) # Chai Wah Wu, May 25 2022

Formula

G.f.: (1+x+x^2)/(1-x^6) = 1/((1-x)*(1+x)*(1-x+x^2)).
a(n) = a(n-6) for n>=6, a(0)=a(1)=a(2)=1, a(3)=a(4)=a(5)=0.
a(n) = ((-1)^floor((5*n + 2)/3) + 1)/2 = ( (-1)^floor(n/3) + 1 )/2. [Simplified by Bruno Berselli, Jul 09 2013]
a(n) = Sum_{k=0..floor(n/2)} U(n-2k, 1/2). - Paul Barry, Nov 15 2003
From Paul Barry, Mar 14 2004: (Start)
Partial sums of expansion of 1/(1+x^3), see A131531.
a(n) = 2*sin(Pi*n/3 + Pi/6)/3 + cos(Pi*n)/6 + 1/2. (End)
a(n) = floor(((n+3) mod 6)/3).
a(n) = floor((5*n-1)/3) mod 2. - Gary Detlefs, May 17 2011
a(n) = 1/2 + cos(Pi*n/3)/3 + sin(Pi*n/3)/sqrt(3) + (-1)^n/6. - R. J. Mathar, Oct 08 2011
a(n) = floor(((n+2)^2)/3) mod 2. - Wesley Ivan Hurt, Jun 29 2013
a(n) = A079979(n) + A079979(n-1) + A079979(n-2). - R. J. Mathar, Jul 10 2015
a(n) = a(n-1) - a(n-3) + a(n-4) for n > 3. - Wesley Ivan Hurt, Jul 05 2016
a(n) = 2*floor(n/6) - floor(n/3) + 1. - Ridouane Oudra, Dec 14 2021
E.g.f.: (2*cosh(x) + exp(x/2)*(cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + sinh(x))/3. - Stefano Spezia, Aug 04 2025

A131078 Periodic sequence (1, 1, 1, 1, 0, 0, 0, 0).

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007

Keywords

Crossrefs

Period 2*k: repeat k ones followed by k zeros: A000035(n+1) (k=1), A133872(n) (k=2), A088911 (k=3), this sequence (k=4), and A112713(n-1) (k=5).

Programs

  • Magma
    m:=105; [ [1, 1, 1, 1, 0, 0, 0, 0][ (n-1) mod 8 + 1 ]: n in [1..m] ];
    
  • Magma
    &cat[[1, 1, 1, 1, 0, 0, 0,0]: n in [0..10]]; // Vincenzo Librandi, May 31 2015
    
  • Magma
    [Floor((1+(-1)^((2*n+11-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))/8))/2): n in [1..60]]; // Vincenzo Librandi, May 31 2015
    
  • PARI
    {m=105; for(n=1, m, print1((n-1)%8<4, ","))}
    
  • Python
    def A131078(n): return int(not n-1&4) # Chai Wah Wu, Jan 31 2023

Formula

a(1) = a(2) = a(3) = a(4) = 1, a(5) = a(6) = a(7) = a(8) = 0; for n > 8, a(n) = a(n-8).
G.f.: x/((1-x)*(1+x^4)).
a(n) = floor(((n+4) mod 8)/4). [Gary Detlefs, May 17 2011]
From Wesley Ivan Hurt, May 30 2015: (Start)
a(n) = a(n-1)-a(n-4)+a(n-5), n>5.
a(n) = (1+(-1)^((2*n+11-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))/8))/2. (End)
From Ridouane Oudra, Nov 17 2019: (Start)
a(n) = binomial(n+3,4) mod 2
a(n) = floor((n+3)/4) - 2*floor((n+3)/8). (End)

A112712 Expansion of x/(1 - x + 2*x^2 - 2*x^3 + 2*x^4 - x^5 + x^6).

Original entry on oeis.org

0, 1, 1, -1, -1, 1, 0, -2, 0, 2, 0, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 0, -2, 0, 2, 0, -1, 1, 1, -1, -1, 0, 0, 0, 0, 0, 1, 1, -1, -1, 1, 0, -2, 0, 2, 0, -1, 1, 1, -1, -1, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 15 2005

Keywords

Comments

A modified Chebyshev transform of the Fibonacci numbers F(n) under the mapping g(x) -> (1/(1 + x^2)^2)*g(x/(1 + x^2)).

Crossrefs

Cf. A112713.

Programs

  • Mathematica
    f[x_] = -1/x^(3/2) + 1/x^(5/2) - 2/x^(7/2) + 2/x^(9/2) - 2/x^(11/2) + 1/x^(13/2) - 1/x^(15/2);
    CoefficientList[Series[-(1/(x^(13/2)*f[x])), {x, 0, 50}], x] (* Roger L. Bagula, Jun 06 2007 *)
    LinearRecurrence[{1,-2,2,-2,1,-1},{0,1,1,-1,-1,1},80] (* Harvey P. Dale, Jun 14 2019 *)
  • Maxima
    a(n) := sum((-1)^(k + 1)*binomial(n - k + 2, k - 1)*fib(n - 2*k + 2), k, 0, floor((n + 2)/2)); /* Franck Maminirina Ramaharo, Jan 08 2019 */

Formula

G.f.: x*(1 + x - x^2 - x^3 + x^4 - 2*x^6 + 2*x^8 - x^10 + x^11 + x^12 - x^13 - x^14)/(1 - x^20).
a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + a(n-5) - a(n-6).
a(n) = a(n-20).
a(n) = Sum_{k=0..floor((n+2)/2)} (-1)^(k + 1)*C(n - k + 2, k - 1)*F(n-2k+2).
a(n) = Sum_{k=0..n} (F(k)*(-1)^((n - k)/2)*(Sum{j=0..n} C((j + k)/2, k)*(1 + (-1)^(n - j))(1 + (-1)^(j - k))/4)).
G.f.: -1/(x^(13/2)*f(x)), where f(x) = -1/x^(3/2) + 1/x^(5/2) - 2/x^(7/2) + 2/x^(9/2) - 2/x^(11/2) + 1/x^(13/2) - 1/x^(15/2) is the Jones polynomial for the link with Dowker-Thistlethwaite notation L6a2. - Roger L. Bagula, Jun 06 2007
Showing 1-4 of 4 results.