cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A056239 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} k*c_k.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 8, 6, 13, 7, 14, 7, 7, 10, 15, 6, 8, 7, 9, 8, 16, 7, 8, 7, 10, 11, 17, 7, 18, 12, 8, 6, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 7, 8, 14, 23, 8, 10, 15, 12, 8, 24, 8, 10
Offset: 1

Views

Author

Leroy Quet, Aug 19 2000

Keywords

Comments

A pseudo-logarithmic function in the sense that a(b*c) = a(b)+a(c) and so a(b^c) = c*a(b) and f(n) = k^a(n) is a multiplicative function. [Cf. A248692 for example.] Essentially a function from the positive integers onto the partitions of the nonnegative integers (1->0, 2->1, 3->2, 4->1+1, 5->3, 6->1+2, etc.) so each value a(n) appears A000041(a(n)) times, first with the a(n)-th prime and last with the a(n)-th power of 2. Produces triangular numbers from primorials. - Henry Bottomley, Nov 22 2001
Michael Nyvang writes (May 08 2006) that the Danish composer Karl Aage Rasmussen discovered this sequence in the 1990's: it has excellent musical properties.
All A000041(a(n)) different n's with the same value a(n) are listed in row a(n) of triangle A215366. - Alois P. Heinz, Aug 09 2012
a(n) is the sum of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(33) = 7 because the partition with Heinz number 33 = 3 * 11 is [2,5]. - Emeric Deutsch, May 19 2015

Examples

			a(12) = 1*2 + 2*1 = 4, since 12 = 2^2 *3^1 = (p_1)^2 *(p_2)^1.
		

Crossrefs

Programs

  • Haskell
    a056239 n = sum $ zipWith (*) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    # To get 10000 terms. First make prime table: M:=10000; pl:=array(1..M); for i from 1 to M do pl[i]:=0; od: for i from 1 to M do if ithprime(i) > M then break; fi; pl[ithprime(i)]:=i; od:
    # Decode Maple's amazing syntax for factoring integers: g:=proc(n) local e,p,t1,t2,t3,i,j,k; global pl; t1:=ifactor(n); t2:=nops(t1); if t2 = 2 and whattype(t1) <> `*` then p:=op(1,op(1,t1)); e:=op(2,t1); t3:=pl[p]*e; else
    t3:=0; for i from 1 to t2 do j:=op(i,t1); if nops(j) = 1 then e:=1; p:=op(1,j); else e:=op(2,j); p:=op(1,op(1,j)); fi; t3:=t3+pl[p]*e; od: fi; t3; end; # N. J. A. Sloane, May 10 2006
    A056239 := proc(n) add( numtheory[pi](op(1,p))*op(2,p), p = ifactors(n)[2]) ; end proc: # R. J. Mathar, Apr 20 2010
    # alternative:
    with(numtheory): a := proc (n) local B: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: add(B(n)[i], i = 1 .. nops(B(n))) end proc: seq(a(n), n = 1 .. 130); # Emeric Deutsch, May 19 2015
  • Mathematica
    a[1] = 0; a[2] = 1; a[p_?PrimeQ] := a[p] = PrimePi[p];
    a[n_] := a[n] = Total[#[[2]]*a[#[[1]]] & /@ FactorInteger[n]]; a /@ Range[91] (* Jean-François Alcover, May 19 2011 *)
    Table[Total[FactorInteger[n] /. {p_, c_} /; p > 0 :> PrimePi[p] c], {n, 91}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); \\ Antti Karttunen, Oct 26 2014, edited Jan 13 2020
    
  • Python
    from sympy import primepi, factorint
    def A056239(n): return sum(primepi(p)*e for p, e in factorint(n).items()) # Chai Wah Wu, Jan 01 2023
  • Scheme
    (require 'factor) ;; Uses the function factor available in Aubrey Jaffer's SLIB Scheme library.
    (define (A056239 n) (apply + (map A049084 (factor n))))
    ;; Antti Karttunen, Oct 26 2014
    

Formula

Totally additive with a(p) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = Sum_{k=1..A001221(n)} A049084(A027748(k))*A124010(k). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Oct 11 2014: (Start)
a(n) = n - A178503(n).
a(n) = A161511(A156552(n)).
a(n) = A227183(A243354(n)).
For all n >= 0:
a(A002110(n)) = A000217(n). [Cf. Henry Bottomley's comment above.]
a(A005940(n+1)) = A161511(n).
a(A243353(n)) = A227183(n).
Also, for all n >= 1:
a(A241909(n)) = A243503(n).
a(A122111(n)) = a(n).
a(A242424(n)) = a(n).
A248692(n) = 2^a(n). (End)
a(n) < A329605(n), a(n) = A001222(A108951(n)), a(A329902(n)) = A112778(n). - Antti Karttunen, Jan 14 2020

A002182 Highly composite numbers: numbers n where d(n), the number of divisors of n (A000005), increases to a record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160
Offset: 1

Views

Author

Keywords

Comments

Where record values of d(n) occur: d(n) > d(k) for all k < n.
A002183 is the RECORDS transform of A000005, i.e., lists the corresponding values d(n) for n in A002182.
Flammenkamp's page also has a copy of the missing Siano paper.
Highly composite numbers are the product of primorials, A002110. See A112779 for the number of primorial terms in the product of a highly composite number. - Jud McCranie, Jun 12 2005
Sigma and tau for highly composite numbers through the 146th entry conform to a power fit as follows: log(sigma)=A*log(tau)^B where (A,B) =~ (1.45,1.38). - Bill McEachen, May 24 2006
a(n) often corresponds to P(n,m) = number of permutations of n things taken m at a time. Specifically, if start=1, pointers 1-6, 9, 10, 13-15, 17-19, 22, 23, 28, 34, 37, 43, 52, ... An example is a(37)=665280, which is P(12,6)=12!/(12-6)!. - Bill McEachen, Feb 09 2009
Concerning the previous comment, if m=1, then P(n,m) can represent any number. So let's assume m > 1. Searching the first 1000 terms, the only indices of terms of the form P(n,m) are 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28, 31, 34, 37, 41, 43, 44, 47, 50, 52, and 54. Note that a(44) = 4324320 = P(2079,2). See A163264. - T. D. Noe, Jun 10 2009
A large number of highly composite numbers have 9 as their digit root. - Parthasarathy Nambi, Jun 07 2009
Because 9 divides all highly composite numbers greater than 1680, those numbers have digital root 9. - T. D. Noe, Jul 24 2009
See A181309 for highly composite numbers that are not highly abundant.
a(n) is also defined by the recurrence: a(1) = 1, a(n+1)/sigma(a(n+1)) < a(n) / sigma(a(n)). - Michel Lagneau, Jan 02 2012 [NOTE: This "definition" is wrong (a(20)=7560 does not satisfy this inequality) and incomplete: It does not determine a sequence uniquely, e.g., any subsequence would satisfy the same relation. The intended meaning is probably the definition of the (different) sequence A004394. - M. F. Hasler, Sep 13 2012]
Up to a(1000), the terms beyond a(5) = 12 resp. beyond a(9) = 60 are a multiples of these. Is this true for all subsequent terms? - M. F. Hasler, Sep 13 2012 [Yes: see EXAMPLE in A199337! - M. F. Hasler, Jan 03 2020]
Differs from the superabundant numbers from a(20)=7560 on, which is not in A004394. The latter is not a subsequence of A002182, as might appear from considering the displayed terms: The two sequences have only 449 terms in common, the largest of which is A002182(2567) = A004394(1023). See A166735 for superabundant numbers that are not highly composite, and A004394 for further information. - M. F. Hasler, Sep 13 2012
Subset of A067128 and of A025487. - David A. Corneth, May 16 2016, Jan 03 2020
It seems that a(n) +- 1 is often prime. For n <= 1000 there are 210 individual primes and 17 pairs of twin primes. See link to Lim's paper below. - Dmitry Kamenetsky, Mar 02 2019
There are infinitely many numbers in this sequence and a(n+1) <= 2*a(n), because it is sufficient to multiply a(n) by 2 to get a number having more divisors. (This proves Guess 0 in the Lim paper.) For n = (1, 2, 4, 5, 9, 13, 18, ...) one has equality in this bound, but asymptotically a(n+1)/a(n) goes to 1, cf. formula due to Erdős. See A068507 for the terms such that a(n)+-1 are twin primes. - M. F. Hasler, Jun 23 2019
Conjecture: For n > 7, a(n) is a Zumkeller number (A083207). Verified for n up to and including 48. If this conjecture is true, one may base on it an alternative proof of the fact that for n>7 a(n) is not a perfect square (see Fact 5, Rao/Peng arXiv link at A083207). - Ivan N. Ianakiev, Jun 29 2019
The conjecture above is true (see the proof in the "Links" section). - Ivan N. Ianakiev, Jan 31 2020
The first instance of omega(a(n)) < omega(a(n-1)) (omega = A001221: number of prime divisors) is at a(26) = 45360. Up to n = 10^4, 1759 terms have this property, but omega decreases by 2 only at indices n = 5857, 5914 and 5971. - M. F. Hasler, Jan 02 2020
Inequality (54) in Ramanujan (1915) implies that for any m there is n* such that m | a(n) for all n > n*: see A199337 for the proof. - M. F. Hasler, Jan 03 2020

Examples

			a(5) = 12 is in the sequence because A000005(12) is larger than any earlier value in A000005. - _M. F. Hasler_, Jan 03 2020
		

References

  • CRC Press Standard Mathematical Tables, 28th Ed, p. 61.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris 2008.
  • L. E. Dickson, History of Theory of Numbers, I, p. 323.
  • Ross Honsberger, An introduction to Ramanujan's Highly Composite Numbers, Chap. 14 pp. 193-200 Mathematical Gems III, DME no. 9 MAA 1985
  • Jean-Louis Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 88.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Cf. A261100 (a left inverse).
Cf. A002808. - Peter J. Marko, Aug 16 2018
Cf. A279930 (highly composite and highly Brazilian).
Cf. A068507 (terms such that a(n)+-1 are twin primes).
Cf. A199337 (number of terms not divisible by n).

Programs

  • Mathematica
    a = 0; Do[b = DivisorSigma[0, n]; If[b > a, a = b; Print[n]], {n, 1, 10^7}]
    (* Convert A. Flammenkamp's 779674-term dataset; first, decompress, rename "HCN.txt": *)
    a = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[StringSplit@ #, 1] & /@ Import["HCN.txt", "Data"] (* Michael De Vlieger, May 08 2018 *)
    DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,2163000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[All,1]] (* Harvey P. Dale, May 13 2022 *)
    NestList[Function[last,
      Module[{d = DivisorSigma[0, last]},
       NestWhile[# + 1 &, last, DivisorSigma[0, #] <= d &]]], 1, 40] (* Steven Lu, Mar 30 2023 *)
  • PARI
    print1(r=1); forstep(n=2,1e5,2, if(numdiv(n)>r, r=numdiv(n); print1(", "n))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    v002182 = [1]/*vector for memoization*/; A002182(n, i = #v002182) ={ if(n > i, v002182 = Vec(v002182, n); my(k = v002182[i], d, s=1); until(i == n, d = numdiv(k); s<60 && k>=60 && s=60; until(numdiv(k += s) > d,); v002182[i++] = k); k, v002182[n])} \\ Antti Karttunen, Jun 06 2017; edited by M. F. Hasler, Jan 03 2020 and Jun 20 2022
    
  • PARI
    is_A002182(n, a=1, b=1)={while(n>A002182(b*=2), a*=2); until(a>b, my(m=(a+b)\2, t=A002182(m)); if(tn, b=m-1, return(m)))} \\ Also used in other sequences. - M. F. Hasler, Jun 20 2022
    
  • Python
    from sympy import divisor_count
    A002182_list, r = [], 0
    for i in range(1,10**4):
        d = divisor_count(i)
        if d > r:
            r = d
            A002182_list.append(i) # Chai Wah Wu, Mar 23 2015

Formula

Also, for n >= 2, smallest values of p for which A006218(p)-A006318(p-1) = A002183(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) < a(n) * (1+log(a(n))^-c) for some positive c (see Erdős). - David A. Corneth, May 16 2016
a(n) = A108951(A329902(n)). - Antti Karttunen, Jan 08 2020
a(n+1) <= 2*a(n). For cases where the equal sign holds, see A072938. - A.H.M. Smeets, Jul 10 2021
Sum_{n>=1} 1/a(n) = A352418. - Amiram Eldar, Mar 24 2022

Extensions

Jun 19 1996: Changed beginning to start at 1.
Jul 10 1996: Matthew Conroy points out that these are different from the super-abundant numbers - see A004394. Last 8 terms sent by J. Lowell; checked by Jud McCranie.
Description corrected by Gerard Schildberger and N. J. A. Sloane, Apr 04 2001
Additional references from Lekraj Beedassy, Jul 24 2001

A329902 Primorial deflation of the n-th highly composite number: the unique integer k such that A108951(k) = A002182(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 9, 24, 10, 20, 15, 40, 30, 60, 28, 21, 56, 42, 84, 63, 168, 126, 336, 140, 66, 189, 280, 132, 99, 264, 198, 528, 220, 396, 297, 440, 792, 156, 117, 312, 234, 624, 260, 468, 351, 520, 936, 390, 1040, 1872, 780, 585, 306, 1560, 340, 612, 459, 680, 1224, 510, 1360, 2448, 1020, 765, 342, 2040, 1530, 684, 513
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Map[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, Take[Import["https://oeis.org/b002182.txt", "Data"][[All, -1]], 69] ] (* Michael De Vlieger, Jan 13 2020, imports b-file at A002182 *)

Formula

a(n) = A329900(A002182(n)) = A319626(A002182(n)).
a(n) = A181815(A306802(n)).
A108951(a(n)) = A002182(n). [Highly composite numbers (undeflated)]
A056239(a(n)) = A112778(n). [Number of prime factors, counted with multiplicity]
A001222(a(n)) = A112779(n). [Largest exponent in the prime factorization]
A329605(a(n)) = A002183(n). [Number of divisors]
A329040(a(n)) = A324381(n).
A324888(a(n)) = A324382(n).
a(A330748(n)) = A330743(n).

Extensions

More linking formulas added by Antti Karttunen, Jan 13 2020

A112779 Largest exponent in the prime factorization of highly composite numbers (definition 1, A002182).

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 4, 2, 3, 2, 4, 3, 4, 3, 2, 4, 3, 4, 3, 5, 4, 6, 4, 3, 4, 5, 4, 3, 5, 4, 6, 4, 5, 4, 5, 6, 4, 3, 5, 4, 6, 4, 5, 4, 5, 6, 4, 6, 7, 5, 4, 4, 6, 4, 5, 4, 5, 6, 4, 6, 7, 5, 4, 4, 6, 5, 5, 4, 6, 5, 6, 4, 6, 7, 5, 4, 6, 5, 7, 6, 5, 6, 4, 4, 6, 7, 5, 5, 4, 6, 6, 5, 7, 6, 5, 6, 4, 7, 6, 7, 5, 7, 6, 8
Offset: 1

Views

Author

Ray Chandler, Nov 11 2005

Keywords

Comments

Each highly composite number can be written as the product of primorials (A002110); a(n) is also the number of primorials used in the product.
a(i) is the exponent of 2 in the prime factorization of A002182(i), cf. formula. - David A. Corneth, Aug 16 2015; edited by M. F. Hasler, Jan 03 2020

Examples

			A002182(8) = 48 = 2^4*3, which has largest exponent 4, so a(8)=4.
		

Crossrefs

Programs

Formula

a(n) = A007814(A002182(n)). - David A. Corneth, Aug 16 2015

A324382 Minimal number of primorials that add to the n-th highly composite number: a(n) = A276150(A002182(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 6, 4, 6, 8, 2, 4, 6, 8, 12, 16, 20, 12, 14, 18, 12, 12, 12, 12, 12, 12, 12, 24, 8, 8, 8, 4, 16, 8, 16, 8, 16, 24, 16, 32, 6, 14, 30, 12, 18, 18, 24, 12, 18, 18, 24, 18, 36, 8, 14, 32, 28, 6, 24, 38, 12, 18, 36, 20, 24, 30, 40, 26, 10, 40, 20, 30, 18, 38, 26, 36, 36, 24, 24, 44, 50, 48, 14, 42
Offset: 1

Views

Author

Antti Karttunen, Feb 26 2019

Keywords

Comments

Among the first 10000 highly composite numbers, only in two cases a(n) < A112779(n). This happens on A002182(12) = 240 and A002182(18) = 2520. Note that A112779(n) gives the number of primorials needed when A002182(n) is expressed as a product [not as a sum] of primorials.

Examples

			For n=12, A002182(12) = 240, which is written as "11000" in primorial base (A049345) because 240 = 1*A002110(4) + 1*A002110(3) = 210+30, thus a(12) = 1+1 = 2. (Note that 240 = 30*2*2*2).
For n=18, A002182(18) = 2520 = "110000" in primorial base because 2520 = 1*A002110(5) + 1*A002110(4) = 2310+210, thus a(18) = 1+1 = 2. (Note that 2520 = 210*6*2).
For n=26, A002182(26) = 45360 = "1670000" in primorial base because 45360 = 1*A002110(6) + 6*A002110(5) + 7*A002110(4), thus a(26) = 1+6+7 = 14. (Note that 45360 = 210*6*6*6).
		

Crossrefs

Programs

Formula

a(n) = A276150(A002182(n)).
a(n) >= A324381(n).

A112781 Number of highly composite numbers (definition 1, A002182) < 10^n.

Original entry on oeis.org

4, 9, 15, 20, 29, 38, 47, 56, 66, 76, 86, 95, 106, 117, 125, 135, 146, 156, 167, 177, 186, 196, 209, 219, 231, 241, 254, 267, 280, 292, 305, 316, 330, 343, 356, 368, 381, 396, 409, 423, 436, 450, 463, 476, 491, 503, 517, 530, 547, 561, 577, 593, 608, 625, 640
Offset: 1

Views

Author

Ray Chandler, Nov 11 2005

Keywords

Examples

			a(1) = 4 since there are four highly composite numbers < 10^1 {1,2,4,6}.
		

Crossrefs

Formula

Partial sums of A112780. - Lekraj Beedassy, Sep 02 2006

A328521 Smallest highly composite number that has n prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 4, 12, 24, 48, 240, 720, 5040, 10080, 20160, 221760, 665280, 8648640, 17297280, 294053760, 2205403200, 27935107200, 293318625600, 1927522396800, 8995104518400, 26985313555200, 782574093100800, 24259796886124800, 48519593772249600, 1795224969573235200, 8976124847866176000, 368021118762513216000
Offset: 0

Views

Author

David A. Corneth, Jan 04 2020

Keywords

Comments

a(n-1) differs from A133411(n) for n in A354880.
Question: Is this sequence strictly growing? If sequence A330748 is monotonic, so is this also, and vice versa. Note that the primorial deflation sequence, A330743, is not monotonic. - Antti Karttunen, Jan 14 2020

Crossrefs

Cf. A001222 (bigomega), A002182 (highly composite numbers), A108951, A112778 (bigomega of HCN's), A330743 (primorial deflation), A330748 (indices in A002182).
Cf. also A133411.
Cf. A354880.

Programs

  • Mathematica
    (* First load the function f at A025487, then: *)
    Block[{s = Union@ Flatten@ f@ 17, t}, t = DivisorSigma[0, s]; s = Map[s[[FirstPosition[t, #][[1]] ]] &, Union@ FoldList[Max, t]]; t = PrimeOmega[s]; Array[s[[FirstPosition[t, #][[1]] ]] &, Max@ t + 1, 0]] (* Michael De Vlieger, Jan 12 2020 *)
  • PARI
    a(n)=for(k=1,oo,bigomega(A2182[k])==n&&return(A2182[k])) \\ Global variable A2182 must hold a vector of values of A002182. - M. F. Hasler, Jan 08 2020

Formula

a(n) = A002182(A330748(n)) = A002182(min{k: A112778(k)=n}). - M. F. Hasler, Jan 08 2020
a(n) = A108951(A330743(n)), where A330743(n) is the first term k of A329902 for which A056239(k) = n. - Antti Karttunen, Jan 13 2020

A112780 Number of highly composite numbers (definition 1, A002182) with n decimal digits.

Original entry on oeis.org

4, 5, 6, 5, 9, 9, 9, 9, 10, 10, 10, 9, 11, 11, 8, 10, 11, 10, 11, 10, 9, 10, 13, 10, 12, 10, 13, 13, 13, 12, 13, 11, 14, 13, 13, 12, 13, 15, 13, 14, 13, 14, 13, 13, 15, 12, 14, 13, 17, 14, 16, 16, 15, 17, 15, 19, 15, 18, 15, 16, 17, 16, 17, 16, 15, 19, 15, 19, 14, 18, 14, 19, 17
Offset: 1

Views

Author

Ray Chandler, Nov 11 2005

Keywords

Examples

			a(1) = 4 since there are four highly composite numbers with one decimal digit {1,2,4,6}.
		

Crossrefs

Formula

First differences of A112781. - Amiram Eldar, Jul 02 2019

A330748 Index of the smallest element in A002182 that has exactly n prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 12, 14, 19, 21, 23, 32, 37, 47, 50, 62, 70, 80, 91, 99, 105, 109, 124, 140, 143, 159, 166, 182, 198, 217, 221, 240, 253, 276, 297, 304, 327, 352, 357, 381, 398, 424, 449, 475, 485, 512, 540, 570, 584, 617, 642, 676, 704, 738, 765, 770, 805, 841, 877, 913, 937, 949, 985, 1021, 1058, 1096, 1134, 1169
Offset: 0

Views

Author

Antti Karttunen, suggested by M. F. Hasler, Jan 10 2020

Keywords

Crossrefs

Programs

  • PARI
    A330748(n) = { for(k=1,#v112778,if(v112778[k]==n,return(k))); -(1/0); };
    
  • PARI
    v329902 = readvec("a329902.txt"); \\ File for the first 779674 terms of A329902
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1])));
    A330748list() = { my(m=Map(), lista=List([]), t); for(i=1, #v329902, t = A056239(v329902[i]); if(!mapisdefined(m,t), mapput(m,t,i))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); };
    v330748 = A330748list();
    A330748(n) = v330748[1+n];
    for(n=0,#v330748-1,write("b330748.txt", n, " ", A330748(n))); \\ Antti Karttunen, Jan 13 2020

Formula

a(n) = min{k: A112778(k)=n}.
A002182(a(n)) = A328521(n).
A329902(a(n)) = A330743(n).

A328523 a(n) = number of terms in A002182 that are of the form A002182(n)/p for some prime p|n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 1, 1, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 1, 3, 2, 1, 3, 1, 2, 2, 2, 2, 3, 2, 2, 4, 3, 1, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 3, 4, 3, 2, 3, 1, 1, 1, 1, 2, 2, 3
Offset: 1

Views

Author

David A. Corneth, Jan 04 2020

Keywords

Comments

Conjecture: a(n) > 0 for n > 1. (This is false.)
It seems that a(815) = 0. - M. F. Hasler, Jan 08 2020

Crossrefs

Cf. A112778(n) = A001222(A002182(n)) (bigomega of HCN's).

Programs

  • PARI
    apply( {a(n)=#[0|p<-factor(n=A2182[n])[,1], setsearch(A2182,n/p)]}, [1..99]) \\ Uses global var. A2182 which must be assigned to a vector of at least n elements of that sequence. - M. F. Hasler, Jan 08 2020
Showing 1-10 of 13 results. Next