cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055997 Numbers k such that k*(k - 1)/2 is a square.

Original entry on oeis.org

1, 2, 9, 50, 289, 1682, 9801, 57122, 332929, 1940450, 11309769, 65918162, 384199201, 2239277042, 13051463049, 76069501250, 443365544449, 2584123765442, 15061377048201, 87784138523762, 511643454094369, 2982076586042450, 17380816062160329, 101302819786919522
Offset: 1

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

Numbers k such that (k-th triangular number - k) is a square.
Gives solutions to A007913(2x)=A007913(x-1). - Benoit Cloitre, Apr 07 2002
Number of closed walks of length 2k on the grid graph P_2 X P_3. - Mitch Harris, Mar 06 2004
If x = A001109(n - 1), y = a(n) and z = x^2 + y, then x^4 + y^3 = z^2. - Bruno Berselli, Aug 24 2010
The product of any term a(n) with an even successor a(n + 2k) is always a square number. The product of any term a(n) with an odd successor a(n + 2k + 1) is always twice a square number. - Bradley Klee & Bill Gosper, Jul 22 2015
It appears that dividing even terms by two and taking the square root gives sequence A079496. - Bradley Klee, Jul 25 2015
The bisections of this sequence are a(2n - 1) = A055792(n) and a(2n) = A088920(n). - Bernard Schott, Apr 19 2020

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
  • P. Tauvel, Exercices d'Algèbre Générale et d'Arithmétique, Dunod, 2004, Exercice 35 pages 346-347.

Crossrefs

A001109(n-1) = sqrt{[(a(n))^2 - (a(n))]/2}.
a(n) = A001108(n-1)+1.
A001110(n-1)=a(n)*(a(n)-1)/2.
Identical to A115599, but with additional leading term.

Programs

  • Magma
    I:=[1,2,9]; [n le 3 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
  • Maple
    A:= gfun:-rectoproc({a(n) = 6*a(n-1)-a(n-2)-2, a(1) = 1, a(2) = 2}, a(n), remember):
    map(A,[$1..100]); # Robert Israel, Jul 22 2015
  • Mathematica
    Table[ 1/4*(2 + (3 - 2*Sqrt[2])^k + (3 + 2*Sqrt[2])^k ) // Simplify, {k, 0, 20}] (* Jean-François Alcover, Mar 06 2013 *)
    CoefficientList[Series[(1 - 5 x + 2 x^2) / ((1 - x) (1 - 6 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    (1 + ChebyshevT[#, 3])/2 & /@ Range[0, 20] (* Bill Gosper, Jul 20 2015 *)
    a[1]=1;a[2]=2;a[n_]:=(a[n-1]+1)^2/a[n-2];a/@Range[25] (* Bradley Klee, Jul 25 2015 *)
    LinearRecurrence[{7,-7,1},{1,2,9},30] (* Harvey P. Dale, Dec 06 2015 *)
  • PARI
    Vec((1-5*x+2*x^2)/((1-x)*(1-6*x+x^2))+O(x^66)) /* Joerg Arndt, Mar 06 2013 */
    
  • PARI
    t(n)=(1+sqrt(2))^(n-1);
    for(k=1,24,print1(round((1/4)*(t(k)^2 + t(k)^(-2) + 2)),", ")) \\ Hugo Pfoertner, Nov 29 2019
    
  • PARI
    a(n) = (1 + polchebyshev(n-1, 1, 3))/2; \\ Michel Marcus, Apr 21 2020
    

Formula

a(n) = 6*a(n - 1) - a(n - 2) - 2; n >= 3, a(1) = 1, a(2) = 2.
G.f.: x*(1 - 5*x + 2*x^2)/((1 - x)*(1 - 6*x + x^2)).
a(n) - 1 + sqrt(2*a(n)*(a(n) - 1)) = A001652(n - 1). - Charlie Marion, Jul 21 2003; corrected by Michel Marcus, Apr 20 2020
a(n) = IF(mod(n; 2)=0; (((1 - sqrt(2))^n + (1 + sqrt(2))^n)/2)^2; 2*((((1 - sqrt(2))^(n + 1) + (1 + sqrt(2))^(n + 1)) - (((1 - sqrt(2))^n + (1 + sqrt(2))^n)))/4)^2). The odd-indexed terms are a(2n + 1) = [A001333(2n)]^2; the even-indexed terms are a(2n) = [A001333(2n - 1)]^2 + 1 = 2*[A001653(n)]^2. - Antonio Alberto Olivares, Jan 31 2004; corrected by Bernard Schott, Apr 20 2020
A053141(n + 1) + a(n + 1) = A001541(n + 1) + A001109(n + 1). - Creighton Dement, Sep 16 2004
a(n) = (1/2) + (1/4)*(3+2*sqrt(2))^(n-1) + (1/4)*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Feb 21 2006; corrected by Michel Marcus, Apr 20 2020
a(n) = A001653(n)-A001652(n-1). - Charlie Marion, Apr 10 2006; corrected by Michel Marcus, Apr 20 2020
a(2k) = A001541(k)^2. - Alexander Adamchuk, Nov 24 2006
a(n) = 2*A001653(m)*A011900(n-m-1) +A002315(m)*A001652(n-m-1) - A001108(m) with mA001653(m)*A011900(m-n) - A002315(m)*A046090(m-n) - A001108(m). See Link to Generalized Proof re Square Triangular Numbers. - Kenneth J Ramsey, Oct 13 2011
a(n) = +7*a(n-1) -7*a(n-2) +1*a(n-3). - Joerg Arndt, Mar 06 2013
a(n) * a(n+2) = (A001108(n)-A001652(n)+3*A046090(n))^2. - Robert Israel, Jul 23 2015
sqrt(a(n+1)*a(n-1)) = a(n)+1 - Bradley Klee & Bill Gosper, Jul 25 2015
a(n) = 1 + sum{k=0..n-2} A002315(k). - David Pasino, Jul 09 2016; corrected by Michel Marcus, Apr 20 2020
E.g.f.: (2*exp(x) + exp((3-2*sqrt(2))*x) + exp((3+2*sqrt(2))*x))/4. - Ilya Gutkovskiy, Jul 09 2016
sqrt(a(n)*(a(n)-1)/2) = A001542(n)/2. - David Pasino, Jul 09 2016
Limit_{n -> infinity} a(n)/a(n-1) = A156035. - César Aguilera, Apr 07 2018
a(n) = (1/4)*(t^2 + t^(-2) + 2), where t = (1+sqrt(2))^(n-1). - Ridouane Oudra, Nov 29 2019
sqrt(a(n)) + sqrt(a(n) - 1) = (1 + sqrt(2))^(n - 1). - Ridouane Oudra, Nov 29 2019
sqrt(a(n)) - sqrt(a(n) - 1) = (-1 + sqrt(2))^(n - 1). - Bernard Schott, Apr 18 2020

A233073 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, antidiagonally or vertically, top left element zero, and 1 appearing before 2 in row major order.

Original entry on oeis.org

1, 2, 2, 5, 9, 5, 14, 50, 50, 14, 41, 289, 582, 289, 41, 122, 1682, 6854, 6854, 1682, 122, 365, 9801, 80811, 164495, 80811, 9801, 365, 1094, 57122, 952869, 3957778, 3957778, 952869, 57122, 1094, 3281, 332929, 11235652, 95264272, 194998895, 95264272
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2013

Keywords

Comments

Table starts
....1........2...........5.............14................41
....2........9..........50............289..............1682
....5.......50.........582...........6854.............80811
...14......289........6854.........164495...........3957778
...41.....1682.......80811........3957778.........194998895
..122.....9801......952869.......95264272........9622519979
..365....57122....11235652.....2293174089......475027244071
.1094...332929...132484030....55201144642....23452561697310
.3281..1940450..1562171807..1328800293991..1157902539075279
.9842.11309769.18420188169.31986846738550.57168401542703366

Examples

			Some solutions for n=4 k=4
..0..0..1..0....0..0..1..1....0..0..0..0....0..1..0..1....0..0..1..1
..1..1..0..0....0..0..1..0....1..0..2..2....1..0..0..0....0..1..1..1
..1..1..0..2....0..1..1..1....1..0..2..2....1..0..0..1....0..1..0..0
..0..1..0..2....1..3..1..3....1..0..0..2....0..0..1..1....0..0..0..2
		

Crossrefs

Column 1 is A007051(n-1)
Column 2 is A115599

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 7*a(n-1) -7*a(n-2) +a(n-3)
k=3: a(n) = 14*a(n-1) -28*a(n-2) +24*a(n-3) -11*a(n-4) +2*a(n-5) for n>6
k=4: [order 11] for n>12
k=5: [order 21] for n>23
k=6: [order 58] for n>60

A158464 Number of distinct squares in row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 19 2009

Keywords

Comments

It seems that some subset of terms in A055997 (A115599) gives the positions of 3's. E.g., we have a(9) = a(50) = a(289) = a(9801) = 3, but on the other hand, a(1682) = a(57122) = 2. - Antti Karttunen, Nov 03 2017

Examples

			a(8) = #{1} = 1;
a(9) = #{1,9,36} = 3.
		

Crossrefs

Programs

  • Maple
    A158464 := proc(n)
        local sqset,k ;
        sqset := {} ;
        for k from 0 to n do
            P := binomial(n,k) ;
            if issqr(P) then
                sqset := sqset union {P} ;
            end if;
        end do:
        nops(sqset) ;
    end proc:
    seq(A158464(n),n=0..120) ; # R. J. Mathar, Jul 09 2016
  • Mathematica
    CountDistinct /@ Table[Sqrt@ Binomial[n, k] /. k_ /; ! IntegerQ@ k -> Nothing, {n, 0, 104}, {k, 0, n}] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    A158464(n) = sum(k=0,n\2,issquare(binomial(n,k))); \\ Antti Karttunen, Nov 03 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} A010052(A007318(n,k));
a(A000290(n)) > 1 for n > 1.

Extensions

More terms from Antti Karttunen, Nov 03 2017
Showing 1-3 of 3 results.