A130883
a(n) = 2*n^2 - n + 1.
Original entry on oeis.org
1, 2, 7, 16, 29, 46, 67, 92, 121, 154, 191, 232, 277, 326, 379, 436, 497, 562, 631, 704, 781, 862, 947, 1036, 1129, 1226, 1327, 1432, 1541, 1654, 1771, 1892, 2017, 2146, 2279, 2416, 2557, 2702, 2851, 3004, 3161, 3322, 3487, 3656, 3829, 4006, 4187, 4372, 4561
Offset: 0
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, Reading, MA, 1994, pp. 7-8, and Problem 1.18, pages 19 and 500.
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Kival Ngaokrajang, Illustration of irregular spirals (center points: 1, 2)
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- N. J. A. Sloane, Illustration for a(3) = 16
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a130883 = a128918 . (* 2) -- Reinhard Zumkeller, Oct 27 2013
-
[2*n^2 - n + 1 : n in [0..50]]; // Wesley Ivan Hurt, Mar 25 2020
-
a[n_]:=2*n^2-n+1; (* or *) Array[ -#*(1-#*2)+1&,5!,0] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)
LinearRecurrence[{3,-3,1},{1,2,7},50] (* Harvey P. Dale, Jul 20 2011 *)
-
a(n)=2*n^2-n+1 \\ Charles R Greathouse IV, Sep 24 2015
-
def A130883(n): return n*(2*n - 1) + 1 # Chai Wah Wu, May 24 2022
A140064
a(n) = (9*n^2 - 5*n + 2)/2.
Original entry on oeis.org
1, 3, 14, 34, 63, 101, 148, 204, 269, 343, 426, 518, 619, 729, 848, 976, 1113, 1259, 1414, 1578, 1751, 1933, 2124, 2324, 2533, 2751, 2978, 3214, 3459, 3713, 3976, 4248, 4529, 4819, 5118, 5426, 5743, 6069, 6404, 6748, 7101, 7463, 7834, 8214, 8603, 9001, 9408, 9824, 10249, 10683, 11126, 11578, 12039, 12509, 12988, 13476, 13973
Offset: 0
- N. J. A. Sloane, Table of n, a(n) for n = 0..5000 [First 1000 terms from G. C. Greubel]
- N. J. A. Sloane, The long-legged letters A, I, V, X, and Z. The long-legged A is a long-legged V with a crossbar. The distances from the tip of the A to the end-points of the crossbar need not be equal.
- N. J. A. Sloane, 14 regions using 2 copies of the Wu graph
- N. J. A. Sloane, 34 regions using 3 copies of the Wu graph
- N. J. A. Sloane, Transforming a Hatpin graph to a Wu graph.
- N. J. A. Sloane, 14 regions using 2 long-legged A's [Crossbars are shown in red]
- N. J. A. Sloane, 34 regions using 3 long-legged A's [Crossbars are shown in red]
- N. J. A. Sloane, Transforming a long-legged A_n graph to a Wu_n graph, and vice-versa
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[ n eq 1 select 1 else Self(n-1)+9*n-16: n in [1..50] ];
-
seq((16-23*n+9*n^2)*1/2,n=1..40); # Emeric Deutsch, May 07 2008
-
Table[(9n^2-23n+16)/2,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{1,3,14},40] (* Harvey P. Dale, Oct 01 2011 *)
-
x='x+O('x^50); Vec(x*(1+8*x^2)/(1-x)^3) \\ G. C. Greubel, Feb 18 2017
A214230
Sum of the eight nearest neighbors of n in a right triangular type-1 spiral with positive integers.
Original entry on oeis.org
53, 88, 78, 125, 85, 84, 125, 97, 108, 143, 223, 168, 158, 169, 201, 284, 208, 183, 179, 187, 210, 281, 226, 219, 227, 235, 261, 314, 430, 339, 311, 310, 318, 326, 346, 396, 515, 403, 360, 347, 355, 363, 371, 379, 411, 509, 427, 411, 419, 427, 435, 443, 451, 486, 557
Offset: 1
Right triangular spiral begins:
56
55 57
54 29 58
53 28 30 59
52 27 11 31 60
51 26 10 12 32 61
50 25 9 2 13 33 62
49 24 8 1 3 14 34 63
48 23 7 6 5 4 15 35 64
47 22 21 20 19 18 17 16 36 65
46 45 44 43 42 41 40 39 38 37 66
78 77 76 75 74 73 72 71 70 69 68 67
The eight nearest neighbors of 3 are 1, 2, 13, 33, 14, 4, 5, 6. Their sum is a(3)=78.
-
SIZE=29 # must be odd
grid = [0] * (SIZE*SIZE)
saveX = [0]* (SIZE*SIZE)
saveY = [0]* (SIZE*SIZE)
saveX[1] = saveY[1] = posX = posY = SIZE//2
grid[posY*SIZE+posX]=1
n = 2
def walk(stepX,stepY,chkX,chkY):
global posX, posY, n
while 1:
posX+=stepX
posY+=stepY
grid[posY*SIZE+posX]=n
saveX[n]=posX
saveY[n]=posY
n+=1
if posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0:
return
while 1:
walk(0, -1, 1, 1) # up
if posY==0:
break
walk( 1, 1, -1, 0) # right-down
walk(-1, 0, 0, -1) # left
for n in range(1,92):
posX = saveX[n]
posY = saveY[n]
k = grid[(posY-1)*SIZE+posX] + grid[(posY+1)*SIZE+posX]
k+= grid[(posY-1)*SIZE+posX-1] + grid[(posY-1)*SIZE+posX+1]
k+= grid[(posY+1)*SIZE+posX-1] + grid[(posY+1)*SIZE+posX+1]
k+= grid[posY*SIZE+posX-1] + grid[posY*SIZE+posX+1]
print(k, end=', ')
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A198392
a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.
Original entry on oeis.org
2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0
Cf. sequences related to the triangular spiral:
A022266,
A022267,
A027468,
A038764,
A045946,
A051682,
A062708,
A062725,
A062728,
A062741,
A064225,
A064226,
A081266-
A081268,
A081270-
A081272,
A081275 [incomplete list].
-
[(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
-
LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
-
for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
A276819
a(n) = (9*n^2 - n)/2 + 1.
Original entry on oeis.org
1, 5, 18, 40, 71, 111, 160, 218, 285, 361, 446, 540, 643, 755, 876, 1006, 1145, 1293, 1450, 1616, 1791, 1975, 2168, 2370, 2581, 2801, 3030, 3268, 3515, 3771, 4036, 4310, 4593, 4885, 5186, 5496, 5815, 6143, 6480, 6826, 7181, 7545, 7918, 8300, 8691, 9091, 9500, 9918, 10345, 10781, 11226, 11680, 12143, 12615
Offset: 0
-
Table[(9*n^2-n)/2+1, {n,0,100}]
-
Vec((1+2*x+6*x^2)/(1-x)^3 + O(x^60)) \\ Colin Barker, Sep 18 2016
-
a(n) = (9*n^2 - n)/2 + 1; \\ Altug Alkan, Sep 18 2016
Showing 1-6 of 6 results.
Comments