cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A006558 Start of first run of n consecutive integers with same number of divisors.

Original entry on oeis.org

1, 2, 33, 242, 11605, 28374, 171893, 1043710445721, 2197379769820, 2642166652554075
Offset: 1

Views

Author

Keywords

Comments

The entry 40311 given by Guy and by Wells is incorrect. - Jud McCranie, Jan 20 2002
a(10) <= 2642166652554075, a(11) <= 17707503256664346, a(12) <= 9827470582657267545. - David Wasserman, Feb 22 2008
a(10) > 10^13. - Giovanni Resta, Jul 13 2015
a(12) <= 3842083249515874843. - Hugo van der Sanden, Sep 20 2022
a(13) <= 34169215324203592637988571. - Hugo van der Sanden, Apr 13 2022
a(14) <= 9721439902882994590514319997146. - Hugo van der Sanden, Jun 14 2022
a(15) <= 80215613469168729088982885848674841. - Natalia Makarova, Sep 18 2022
a(16) <= 37981337212463143311694743672867136611416. - Vladimir Letsko, Mar 17 2017
a(17) <= 768369049267672356024049141254832375543516. - Vladimir Letsko, Sep 12 2017
a(18) <= 488900003598703704335810037459507226590256411. - Vladimir Letsko, Jun 03 2022
a(19) <= 5908388043825578351730345292813071711296723319324. - Vladimir Letsko, Apr 09 2022
a(20) <= 17668887847524548413038893976018715843277693308027547. Vladimir Letsko, May 30 2022
Spătaru proves that the longest such run up to N is at most exp(C*sqrt(log N log log N)) for some constant C, hence a(n) >> exp(exp(W((log^2 n)/C))) which is approximately exp(log^2 n/(2 log log n)). - Charles R Greathouse IV, Feb 06 2023

Examples

			33 has four divisors (1, 3, 11, and 33), 34 has four divisors (1, 2, 17, and 34), 35 has four divisors (1, 5, 7, and 35).  These are the first three consecutive numbers with the same number of divisors, so a(3)=33.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp 12, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, section B18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 87.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, pages 147 and 176.

Crossrefs

Programs

  • Mathematica
    tau = DivisorSigma[0, #]&;
    A006558[q_, w_] := Module[{a, k, j, ok, n}, For[j = 0, j <= w, j++, For[n = 1, n <= q, n++, ok = 1; a = tau[n]; For[k = 1, k <= j, k++, If[a != tau[n + k], ok = 0; Break[]]]; If [ok == 1, Print[n]; Break[]]]]];
    A006558[2*10^5, 7] (* Jean-François Alcover, Dec 10 2017 *)
  • PARI
    isok(n, k)=nb = numdiv(k); for (j=k+1, k+n-1, if (numdiv(j) != nb, return(0));); 1;
    a(n) = {k=1; while (!isok(n, k), k++); k;} \\ Michel Marcus, Feb 17 2016

Extensions

a(8) from Jud McCranie, Jan 20 2002
a(9) conjectured by David Wasserman, Jan 08 2006
a(9) confirmed by Jud McCranie, Jan 14 2006
a(10) by Jud McCranie, Nov 27 2018

A030513 Numbers with 4 divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Equals the disjoint union of A006881 and A030078.

Programs

  • Magma
    [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
    
  • Mathematica
    Select[Range[200], DivisorSigma[0,#]==4&] (* Harvey P. Dale, Apr 06 2011 *)
  • PARI
    is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A030513(n):
        def f(x): return int(n+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010

A030626 Numbers with exactly 8 divisors.

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 102, 104, 105, 110, 114, 128, 130, 135, 136, 138, 152, 154, 165, 170, 174, 182, 184, 186, 189, 190, 195, 222, 230, 231, 232, 238, 246, 248, 250, 255, 258, 266, 273, 282, 285, 286, 290, 296, 297, 310, 318, 322, 328, 344, 345, 351, 354, 357, 366, 370, 374, 375, 376, 385, 399, 402
Offset: 1

Views

Author

Keywords

Comments

Since A119479(8)=7, there are never more than 7 consecutive terms. Runs of 7 consecutive terms start at 171897, 180969, 647385, ... (subsequence of A049053). - Ivan Neretin, Feb 08 2016

Crossrefs

Essentially the same as A111398.

Programs

  • Magma
    [n: n in [1..400] | DivisorSigma(0, n) eq 8]; // Vincenzo Librandi, Oct 05 2017
    
  • Maple
    select(numtheory:-tau=8, [$1..1000]); # Robert Israel, Dec 17 2014
  • Mathematica
    Select[Range[400], DivisorSigma[0, #]== 8 &] (* Vincenzo Librandi, Oct 05 2017 *)
  • PARI
    Vec(select(x->x==8,vector(500, i, numdiv(i)),1)) \\ Michel Marcus, Dec 17 2014
    
  • Python
    from sympy import divisor_count
    isok = lambda n: divisor_count(n) == 8
    print([n for n in range(1, 400) if isok(n)]) # Darío Clavijo, Oct 17 2023
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A030626(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])-primepi(integer_nthroot(x,7)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n))=8. - Juri-Stepan Gerasimov, Oct 10 2009
Equals A065036 (p*q^3) U A007304 (p*q*r) U A092759 (p^7). - Amarnath Murthy, Apr 21 2001

A006601 Numbers k such that k, k+1, k+2 and k+3 have the same number of divisors.

Original entry on oeis.org

242, 3655, 4503, 5943, 6853, 7256, 8392, 9367, 10983, 11605, 11606, 12565, 12855, 12856, 12872, 13255, 13782, 13783, 14312, 16133, 17095, 18469, 19045, 19142, 19143, 19940, 20165, 20965, 21368, 21494, 21495, 21512, 22855, 23989, 26885
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B18, pp. 111-113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A049051 (runs of 5), A049052 (runs of 6), A049053 (runs of 7).

Programs

Extensions

More terms from Olivier Gérard

A030515 Numbers with exactly 6 divisors.

Original entry on oeis.org

12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1

Views

Author

Keywords

Comments

Numbers which are either the 5th power of a prime or the product of a prime and the square of a different prime, i.e., numbers which are in A050997 (5th powers of primes) or A054753. - Henry Bottomley, Apr 25 2000
Also numbers which are the square root of the product of their proper divisors. - Amarnath Murthy, Apr 21 2001
Such numbers are multiplicatively 3-perfect (i.e., the product of divisors of a(n) equals a(n)^3). - Lekraj Beedassy, Jul 13 2005
Since A119479(6)=5, there are never more than 5 consecutive terms. Quintuples of consecutive terms start at 10093613546512321, 14414905793929921, 266667848769941521, ... (A141621). No such quintuple contains a term of the form p^5. - Ivan Neretin, Feb 08 2016

References

  • Amarnath Murthy, A note on the Smarandache Divisor sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

Crossrefs

Cf. A061117.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, {2,seq(i,i=3..floor(N/4))}):
    S:= select(`<=`,{seq(p^5, p = Primes),seq(seq(p*q^2, p=Primes minus {q}),q=Primes)},N):
    sort(convert(S,list)); # Robert Israel, Feb 10 2016
  • Mathematica
    f[n_]:=Length[Divisors[n]]==6; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
    Select[Range[500],DivisorSigma[0,#]==6&] (* Harvey P. Dale, Oct 02 2014 *)
  • PARI
    is(n)=numdiv(n)==6 \\ Charles R Greathouse IV, Jan 23 2014
    
  • Python
    from sympy import divisor_count
    def ok(n): return divisor_count(n) == 6
    print([k for k in range(429) if ok(k)]) # Michael S. Branicky, Dec 18 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A030515(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**2) for p in primerange(isqrt(x)+1))+primepi(integer_nthroot(x,3)[0])-primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Union of A050997 and A054753. - Lekraj Beedassy, Jul 13 2005
A000005(a(n))=6. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Definition clarified by Jonathan Sondow, Jan 23 2014

A049051 Numbers k such that k through k+4 all have the same number of divisors.

Original entry on oeis.org

11605, 12855, 13782, 19142, 21494, 28374, 28375, 40311, 42805, 50582, 55254, 60231, 60663, 79094, 87655, 90181, 90182, 95845, 99655, 103621, 109765, 115591, 120727, 121045, 122151, 122871, 142454, 142806, 152630, 157493, 157494, 171893
Offset: 1

Views

Author

Keywords

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A006601 (runs of 4), A049052 (runs of 6), A049053 (runs of 7).

Programs

A141621 Numbers that begin a run of 5 consecutive integers of the form p^2*q where p and q are distinct primes.

Original entry on oeis.org

10093613546512321, 14414905793929921, 266667848769941521, 562672865058083521, 1579571757660876721, 1841337567664174321, 2737837351207392721, 4456162869973433521, 4683238426747860721, 4993613853242910721, 5037980611623036721, 5174116847290255921
Offset: 1

Views

Author

Matthijs Coster, Aug 23 2008

Keywords

Comments

Old name was "The first number of a series of 5 consecutive numbers with the same signature, i.e., all numbers have the format p^2*q, where p and q are primes. Therefore the number of divisors is the same (6)." [That name could have been confusing in that not every sequence of 5 consecutive integers having the same prime signature has the prime signature p^2*q; e.g., 204323 is the first of 5 consecutive numbers of the form p^2*q*r. - Jon E. Schoenfield, Jun 05 2018]
Each of the five numbers in each such sequence has 6 divisors.
It is easy to prove that any number in this sequence must be congruent to 1 modulo 240. The program below calculates only an element of the sequence. Since the reference A119479 it is the smallest one. If we assume that the first element has the format 7^2*n49, the second number has the format 2*p^2, the third element has the format 3^2*n9 and the fifth element has the format 5^2*n25, then p must be modulo 22050 one out of 1181, 3719, 4219, 9119, 12931, 17831, 18331 or 20869.
It is unclear if these numbers are the smallest ones. - Matthijs Coster, Aug 28 2008 [The terms listed in the Data section are, in fact, the smallest numbers matching the definition. - Jon E. Schoenfield, Jun 05 2018]
The first quintuple not of the aforementioned form starts with 5344962129269790721 = 23^2*prime. - Ivan Neretin, Feb 08 2016
Among the first 200 terms, the frequency with which the squared prime factor p is {7, 17, 23, 31, 41, 47, 73, 127, 193, 1039, 1399} is {171, 10, 6, 4, 3, 1, 1, 1, 1, 1, 1}, respectively. - Jon E. Schoenfield, Jun 09 2018

Examples

			a(1) = 10093613546512321, because
10093613546512321 = 7^2 * 205992113194129,
10093613546512322 =   2 * 71040881^2,
10093613546512323 = 3^2 * 1121512616279147,
10093613546512324 = 2^2 * 2523403386628081, and
10093613546512325 = 5^2 * 403744541860493,
so each of the five consecutive integers is of the form p^2*q, and no smaller run of five consecutive integers has this property. [corrected by _Jon E. Schoenfield_, Jun 05 2018]
		

Crossrefs

Programs

  • Sage
    ## Warning: this program appears to be incorrect [Joerg Arndt, Feb 29 2016]
    for m in range(5000):
        p = 22050*m+17831
        if is_prime(p):
            n = 2*p^2-2
            n4 = n/4+1
            if is_prime(n4):
                n49 = floor((n+1)/49)
                if (49*n49 == n+1) and is_prime(n49):
                    n9 = floor((n+3)/9)
                    if (9*n9 == n+3) and is_prime(n9):
                        n25 = floor((n+5)/25)
                        if (25*n25 == n+5) and is_prime(n25):
                            print(n+1, n49, p, n9, n4, n25)

Extensions

Two more terms Matthijs Coster, Aug 28 2008
Missing terms added and extended by Ivan Neretin, Feb 08 2016
New name from Jon E. Schoenfield, Jun 05 2018

A049053 Numbers k such that k through k+6 all have the same number of divisors.

Original entry on oeis.org

171893, 180965, 647381, 1039493, 1071829, 1450261, 1563653, 1713413, 2129029, 2384101, 4704581, 4773301, 5440853, 5775365, 6627061, 6644405, 6697253, 8556661, 8833429, 10531253, 12101509, 12238453, 12307141, 13416661, 13970405
Offset: 1

Views

Author

Keywords

Comments

Allan Swett found that the first term not congruent to 5 mod 16 is 67073285. - Ralf Stephan, Nov 15 2004
Since A119479(n) < 7 for n < 8, no term has fewer than 8 divisors; the first that has more is a(30)=17476613. - Ivan Neretin, Feb 05 2016

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A006601 (runs of 4), A049051 (runs of 5), A049052 (runs of 6).

Programs

  • PARI
    isok(n) = {my(nb = numdiv(n)); for (k=1, 6, if (numdiv(n+k) != nb, return (0));); 1;} \\ Michel Marcus, Feb 06 2016

A049052 Numbers k such that k through k+5 all have the same number of divisors.

Original entry on oeis.org

28374, 90181, 157493, 171893, 171894, 180965, 180966, 210133, 298694, 346502, 369061, 376742, 610310, 647381, 647382, 707286, 729542, 769862, 1039493, 1039494, 1071829, 1071830, 1243541, 1302005, 1449605, 1450261, 1450262
Offset: 1

Views

Author

Keywords

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A006601 (runs of 4), A049051 (runs of 5), A049053 (runs of 7).

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0,Range[1451000]],{x_,x_,x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 03 2020 *)

A292580 T(n,k) is the start of the first run of exactly k consecutive integers having exactly 2n divisors. Table read by rows.

Original entry on oeis.org

5, 2, 6, 14, 33, 12, 44, 603, 242, 10093613546512321, 24, 104, 230, 3655, 11605, 28374, 171893, 48, 2511, 7939375, 60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 19 2017

Keywords

Comments

The number of terms in row n is A119479(2n).
Düntsch and Eggleton (1989) has typos for T(3,5) and T(10,3) (called D(6,5) and D(20,3) in their notation). Letsko (2015) and Letsko (2017) both have a wrong value for T(7,3).
The first value required to extend the data is T(6,13) <= 586683019466361719763403545; the first unknown value that may exist is T(12,19). See the a-file for other known values and upper bounds up to T(50,7).

Examples

			T(1,1) = 5 because 5 is the start of the first "run" of exactly 1 integer having exactly 2*1=2 divisors (5 is the first prime p such that both p-1 and p+1 are nonprime);
T(1,2) = 2 because 2 is the start of the first run of exactly 2 consecutive integers having exactly 2*1=2 divisors (2 and 3 are the only consecutive integers that are prime);
T(3,4) = 242 because the first run of exactly 4 consecutive integers having exactly 2*3=6 divisors is 242 = 2*11^2, 243 = 3^5, 244 = 2^2*61, 245 = 5*7^2.
Table begins:
   n  T(n,1), T(n,2), ...
  ==  ========================================================
   1  5, 2;
   2  6, 14, 33;
   3  12, 44, 603, 242, 10093613546512321;
   4  24, 104, 230, 3655, 11605, 28374, 171893;
   5  48, 2511, 7939375;
   6  60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346, 120402988681658048433948, T(6,13), ...;
   7  192, 29888, 76571890623;
   8  120, 2295, 8294, 153543, 178086, 5852870, 17476613;
   9  180, 6075, 959075, 66251139635486389922, T(9,5);
  10  240, 5264, 248750, 31805261872, 1428502133048749, 8384279951009420621, 189725682777797295066519373;
  11  3072, 2200933376, 104228508212890623;
  12  360, 5984, 72224, 2919123, 15537948, 973277147, 33815574876, 1043710445721, 2197379769820, 2642166652554075, 17707503256664346, T(12,12), ...;
  13  12288, 689278976, 1489106237081787109375;
  14  960, 156735, 23513890624, 4094170438109373, 55644509293039461218749, 4230767238315793911295500109374, 273404501868270838132985214432619890621;
  15  720, 180224, 145705879375, 10868740069638250502059754282498, T(15,5);
  16  840, 21735, 318680, 6800934, 57645182, 1194435205, 14492398389;
  ...
		

Crossrefs

Formula

T(n,2) = A075036(n). - Jon E. Schoenfield, Sep 23 2017

Extensions

a(1)-a(25) from Düntsch and Eggleton (1989) with corrections by Jon E. Schoenfield, Sep 19 2017
a(26)-a(27) from Giovanni Resta, Sep 20 2017
a(28)-a(29) from Hugo van der Sanden, Jan 12 2022
a(30) from Hugo van der Sanden, Sep 03 2022
a(31) added by Hugo van der Sanden, Dec 05 2022; see "calculation of T(6,11)" link for a list of the people involved.
a(32) added by Hugo van der Sanden, Dec 18 2022; see "calculation of T(6,12)" link for a list of the people involved.
Showing 1-10 of 14 results. Next