cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A115158 Number of divisors of A006558(n).

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 8, 24, 24, 24
Offset: 1

Views

Author

Jud McCranie, Jan 14 2006

Keywords

Comments

a(n) is divisible by 3 for n > 7.
More generally, a(n) is divisible by m for all n >= 2^m. - Max Alekseyev, Aug 05 2015

Examples

			phi(33) = phi(34) = phi(35) = 4, so a(3)=4.
		

Crossrefs

Cf. A006558.

Extensions

a(10) from Jud McCranie, Nov 27 2018

A019272 Erroneous version of A006558.

Original entry on oeis.org

1, 14, 33, 242, 11605, 28374, 171893
Offset: 1

Views

Author

Keywords

A000005 d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 8
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is Product p^e(p) then d(n) = Product (e(p) + 1). More generally, for k > 0, sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1) is the sum of the k-th powers of the divisors of n.
Number of ways to write n as n = x*y, 1 <= x <= n, 1 <= y <= n. For number of unordered solutions to x*y=n, see A038548.
Note that d(n) is not the number of Pythagorean triangles with radius of the inscribed circle equal to n (that is A078644). For number of primitive Pythagorean triangles having inradius n, see A068068(n).
Number of factors in the factorization of the polynomial x^n-1 over the integers. - T. D. Noe, Apr 16 2003
Also equal to the number of partitions p of n such that all the parts have the same cardinality, i.e., max(p)=min(p). - Giovanni Resta, Feb 06 2006
Equals A127093 as an infinite lower triangular matrix * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
For odd n, this is the number of partitions of n into consecutive integers. Proof: For n = 1, clearly true. For n = 2k + 1, k >= 1, map each (necessarily odd) divisor to such a partition as follows: For 1 and n, map k + (k+1) and n, respectively. For any remaining divisor d <= sqrt(n), map (n/d - (d-1)/2) + ... + (n/d - 1) + (n/d) + (n/d + 1) + ... + (n/d + (d-1)/2) {i.e., n/d plus (d-1)/2 pairs each summing to 2n/d}. For any remaining divisor d > sqrt(n), map ((d-1)/2 - (n/d - 1)) + ... + ((d-1)/2 - 1) + (d-1)/2 + (d+1)/2 + ((d+1)/2 + 1) + ... + ((d+1)/2 + (n/d - 1)) {i.e., n/d pairs each summing to d}. As all such partitions must be of one of the above forms, the 1-to-1 correspondence and proof is complete. - Rick L. Shepherd, Apr 20 2008
Number of subgroups of the cyclic group of order n. - Benoit Jubin, Apr 29 2008
Equals row sums of triangle A143319. - Gary W. Adamson, Aug 07 2008
Equals row sums of triangle A159934, equivalent to generating a(n) by convolving A000005 prefaced with a 1; (1, 1, 2, 2, 3, 2, ...) with the INVERTi transform of A000005, (A159933): (1, 1,-1, 0, -1, 2, ...). Example: a(6) = 4 = (1, 1, 2, 2, 3, 2) dot (2, -1, 0, -1, 1, 1) = (2, -1, 0, -2, 3, 2) = 4. - Gary W. Adamson, Apr 26 2009
Number of times n appears in an n X n multiplication table. - Dominick Cancilla, Aug 02 2010
Number of k >= 0 such that (k^2 + k*n + k)/(k + 1) is an integer. - Juri-Stepan Gerasimov, Oct 25 2015
The only numbers k such that tau(k) >= k/2 are 1,2,3,4,6,8,12. - Michael De Vlieger, Dec 14 2016
a(n) is also the number of partitions of 2*n into equal parts, minus the number of partitions of 2*n into consecutive parts. - Omar E. Pol, May 03 2017
From Tomohiro Yamada, Oct 27 2020: (Start)
Let k(n) = log d(n)*log log n/(log 2 * log n), then lim sup k(n) = 1 (Hardy and Wright, Chapter 18, Theorem 317) and k(n) <= k(6983776800) = 1.537939... (the constant A280235) for every n (Nicolas and Robin, 1983).
There exist infinitely many n such that d(n) = d(n+1) (Heath-Brown, 1984). The number of such integers n <= x is at least c*x/(log log x)^3 (Hildebrand, 1987) but at most O(x/sqrt(log log x)) (Erdős, Carl Pomerance and Sárközy, 1987). (End)
Number of 2D grids of n congruent rectangles with two different side lengths, in a rectangle, modulo rotation (cf. A038548 for squares instead of rectangles). Also number of ways to arrange n identical objects in a rectangle (NOT modulo rotation, cf. A038548 for modulo rotation); cf. A007425 and A140773 for the 3D case. - Manfred Boergens, Jun 08 2021
The constant quoted above from Nicolas and Robin, 6983776800 = 2^5 * 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19, appears arbitrary, but interestingly equals 2 * A095849(36). That second factor is highly composite and deeply composite. - Hal M. Switkay, Aug 08 2025

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 3*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 345, Exercise XXI(16). MR0121327 (22 #12066)
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 55.
  • G. H. Hardy and E. M. Wright, revised by D. R. Heath-Brown and J. H. Silverman, An Introduction to the Theory of Numbers, 6th ed., Oxford Univ. Press, 2008.
  • K. Knopp, Theory and Application of Infinite Series, Blackie, London, 1951, p. 451.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Chap. II. (For inequalities, etc.)
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. Has many references to this sequence. - N. J. A. Sloane, Jun 02 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. Spearman and K. S. Williams, Handbook of Estimates in the Theory of Numbers, Carleton Math. Lecture Note Series No. 14, 1975; see p. 2.1.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 285.
  • E. C. Titchmarsh, The Theory of Functions, Oxford, 1938, p. 160.
  • Terence Tao, Poincaré's Legacies, Part I, Amer. Math. Soc., 2009, see pp. 31ff for upper bounds on d(n).

Crossrefs

See A002183, A002182 for records. See A000203 for the sum-of-divisors function sigma(n).
For partial sums see A006218.
Factorizations into given number of factors: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (A034836, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered).
Cf. A098198 (Dgf at s=2), A183030 (Dgf at s=3), A183031 (Dgf at s=3).

Programs

  • GAP
    List([1..150],n->Tau(n)); # Muniru A Asiru, Mar 05 2019
    
  • Haskell
    divisors 1 = [1]
    divisors n = (1:filter ((==0) . rem n)
                   [2..n `div` 2]) ++ [n]
    a = length . divisors
    -- James Spahlinger, Oct 07 2012
    
  • Haskell
    a000005 = product . map (+ 1) . a124010_row  -- Reinhard Zumkeller, Jul 12 2013
    
  • Julia
    function tau(n)
        i = 2; num = 1
        while i * i <= n
            if rem(n, i) == 0
                e = 0
                while rem(n, i) == 0
                    e += 1
                    n = div(n, i)
                end
                num *= e + 1
            end
            i += 1
        end
        return n > 1 ? num + num : num
    end
    println([tau(n) for n in 1:104])  # Peter Luschny, Sep 03 2023
  • Magma
    [ NumberOfDivisors(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000005 := tau; [ seq(tau(n), n=1..100) ];
  • Mathematica
    Table[DivisorSigma[0, n], {n, 100}] (* Enrique Pérez Herrero, Aug 27 2009 *)
    CoefficientList[Series[(Log[1 - q] + QPolyGamma[1, q])/(q Log[q]), {q, 0, 100}], q] (* Vladimir Reshetnikov, Apr 23 2013 *)
    a[ n_] := SeriesCoefficient[ (QPolyGamma[ 1, q] + Log[1 - q]) / Log[q], {q, 0, Abs@n}]; (* Michael Somos, Apr 25 2013 *)
    a[ n_] := SeriesCoefficient[ q/(1 - q)^2 QHypergeometricPFQ[ {q, q}, {q^2, q^2}, q, q^2], {q, 0, Abs@n}]; (* Michael Somos, Mar 05 2014 *)
    a[n_] := SeriesCoefficient[q/(1 - q) QHypergeometricPFQ[{q, q}, {q^2}, q, q], {q, 0, Abs@n}] (* Mats Granvik, Apr 15 2015 *)
    With[{M=500},CoefficientList[Series[(2x)/(1-x)-Sum[x^k (1-2x^k)/(1-x^k),{k,M}],{x,0,M}],x]] (* Mamuka Jibladze, Aug 31 2018 *)
  • MuPAD
    numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, numdiv(n))}; /* Michael Somos, Apr 27 2003 */
    
  • PARI
    {a(n) = n=abs(n); if( n<1, 0, direuler( p=2, n, 1 / (1 - X)^2)[n])}; /* Michael Somos, Apr 27 2003 */
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n+1, sumdiv(m, d, (-log(1-x^(m/d) +x*O(x^n) ))^d/d!)), n)} \\ Paul D. Hanna, Aug 21 2014
    
  • Python
    from sympy import divisor_count
    for n in range(1, 20): print(divisor_count(n), end=', ') # Stefano Spezia, Nov 05 2018
    
  • Sage
    [sigma(n, 0) for n in range(1, 105)]  # Zerinvary Lajos, Jun 04 2009
    

Formula

If n is written as 2^z*3^y*5^x*7^w*11^v*... then a(n)=(z+1)*(y+1)*(x+1)*(w+1)*(v+1)*...
a(n) = 2 iff n is prime.
G.f.: Sum_{n >= 1} a(n) x^n = Sum_{k>0} x^k/(1-x^k). This is usually called THE Lambert series (see Knopp, Titchmarsh).
a(n) = A083888(n) + A083889(n) + A083890(n) + A083891(n) + A083892(n) + A083893(n) + A083894(n) + A083895(n) + A083896(n).
a(n) = A083910(n) + A083911(n) + A083912(n) + A083913(n) + A083914(n) + A083915(n) + A083916(n) + A083917(n) + A083918(n) + A083919(n).
Multiplicative with a(p^e) = e+1. - David W. Wilson, Aug 01 2001
a(n) <= 2 sqrt(n) [see Mitrinovich, p. 39, also A046522].
a(n) is odd iff n is a square. - Reinhard Zumkeller, Dec 29 2001
a(n) = Sum_{k=1..n} f(k, n) where f(k, n) = 1 if k divides n, 0 otherwise (Mobius transform of A000012). Equivalently, f(k, n) = (1/k)*Sum_{l=1..k} z(k, l)^n with z(k, l) the k-th roots of unity. - Ralf Stephan, Dec 25 2002
G.f.: Sum_{k>0} ((-1)^(k+1) * x^(k * (k + 1)/2) / ((1 - x^k) * Product_{i=1..k} (1 - x^i))). - Michael Somos, Apr 27 2003
a(n) = n - Sum_{k=1..n} (ceiling(n/k) - floor(n/k)). - Benoit Cloitre, May 11 2003
a(n) = A032741(n) + 1 = A062011(n)/2 = A054519(n) - A054519(n-1) = A006218(n) - A006218(n-1) = 1 + Sum_{k=1..n-1} A051950(k+1). - Ralf Stephan, Mar 26 2004
G.f.: Sum_{k>0} x^(k^2)*(1+x^k)/(1-x^k). Dirichlet g.f.: zeta(s)^2. - Michael Somos, Apr 05 2003
Sequence = M*V where M = A129372 as an infinite lower triangular matrix and V = ruler sequence A001511 as a vector: [1, 2, 1, 3, 1, 2, 1, 4, ...]. - Gary W. Adamson, Apr 15 2007
Sequence = M*V, where M = A115361 is an infinite lower triangular matrix and V = A001227, the number of odd divisors of n, is a vector: [1, 1, 2, 1, 2, 2, 2, ...]. - Gary W. Adamson, Apr 15 2007
Row sums of triangle A051731. - Gary W. Adamson, Nov 02 2007
Sum_{n>0} a(n)/(n^n) = Sum_{n>0, m>0} 1/(n*m). - Gerald McGarvey, Dec 15 2007
Logarithmic g.f.: Sum_{n>=1} a(n)/n * x^n = -log( Product_{n>=1} (1-x^n)^(1/n) ). - Joerg Arndt, May 03 2008
a(n) = Sum_{k=1..n} (floor(n/k) - floor((n-1)/k)). - Enrique Pérez Herrero, Aug 27 2009
a(s) = 2^omega(s), if s > 1 is a squarefree number (A005117) and omega(s) is: A001221. - Enrique Pérez Herrero, Sep 08 2009
a(n) = A048691(n) - A055205(n). - Reinhard Zumkeller, Dec 08 2009
For n > 1, a(n) = 2 + Sum_{k=2..n-1} floor((cos(Pi*n/k))^2). And floor((cos(Pi*n/k))^2) = floor(1/4 * e^(-(2*i*Pi*n)/k) + 1/4 * e^((2*i*Pi*n)/k) + 1/2). - Eric Desbiaux, Mar 09 2010, corrected Apr 16 2011
a(n) = 1 + Sum_{k=1..n} (floor(2^n/(2^k-1)) mod 2) for every n. - Fabio Civolani (civox(AT)tiscali.it), Mar 12 2010
From Vladimir Shevelev, May 22 2010: (Start)
(Sum_{d|n} a(d))^2 = Sum_{d|n} a(d)^3 (J. Liouville).
Sum_{d|n} A008836(d)*a(d)^2 = A008836(n)*Sum_{d|n} a(d). (End)
a(n) = sigma_0(n) = 1 + Sum_{m>=2} Sum_{r>=1} (1/m^(r+1))*Sum_{j=1..m-1} Sum_{k=0..m^(r+1)-1} e^(2*k*Pi*i*(n+(m-j)*m^r)/m^(r+1)). - A. Neves, Oct 04 2010
a(n) = 2*A038548(n) - A010052(n). - Reinhard Zumkeller, Mar 08 2013
Sum_{n>=1} a(n)*q^n = (log(1-q) + psi_q(1)) / log(q), where psi_q(z) is the q-digamma function. - Vladimir Reshetnikov, Apr 23 2013
a(n) = Product_{k = 1..A001221(n)} (A124010(n,k) + 1). - Reinhard Zumkeller, Jul 12 2013
a(n) = Sum_{k=1..n} A238133(k)*A000041(n-k). - Mircea Merca, Feb 18 2013
G.f.: Sum_{k>=1} Sum_{j>=1} x^(j*k). - Mats Granvik, Jun 15 2013
The formula above is obtained by expanding the Lambert series Sum_{k>=1} x^k/(1-x^k). - Joerg Arndt, Mar 12 2014
G.f.: Sum_{n>=1} Sum_{d|n} ( -log(1 - x^(n/d)) )^d / d!. - Paul D. Hanna, Aug 21 2014
2*Pi*a(n) = Sum_{m=1..n} Integral_{x=0..2*Pi} r^(m-n)( cos((m-n)*x)-r^m cos(n*x) )/( 1+r^(2*m)-2r^m cos(m*x) )dx, 0 < r < 1 a free parameter. This formula is obtained as the sum of the residues of the Lambert series Sum_{k>=1} x^k/(1-x^k). - Seiichi Kirikami, Oct 22 2015
a(n) = A091220(A091202(n)) = A106737(A156552(n)). - Antti Karttunen, circa 2004 & Mar 06 2017
a(n) = A034296(n) - A237665(n+1) [Wang, Fokkink, Fokkink]. - George Beck, May 06 2017
G.f.: 2*x/(1-x) - Sum_{k>0} x^k*(1-2*x^k)/(1-x^k). - Mamuka Jibladze, Aug 29 2018
a(n) = Sum_{k=1..n} 1/phi(n / gcd(n, k)). - Daniel Suteu, Nov 05 2018
a(k*n) = a(n)*(f(k,n)+2)/(f(k,n)+1), where f(k,n) is the exponent of the highest power of k dividing n and k is prime. - Gary Detlefs, Feb 08 2019
a(n) = 2*log(p(n))/log(n), n > 1, where p(n)= the product of the factors of n = A007955(n). - Gary Detlefs, Feb 15 2019
a(n) = (1/n) * Sum_{k=1..n} sigma(gcd(n,k)), where sigma(n) = sum of divisors of n. - Orges Leka, May 09 2019
a(n) = A001227(n)*(A007814(n) + 1) = A001227(n)*A001511(n). - Ivan N. Ianakiev, Nov 14 2019
From Richard L. Ollerton, May 11 2021: (Start)
a(n) = A038040(n) / n = (1/n)*Sum_{d|n} phi(d)*sigma(n/d), where phi = A000010 and sigma = A000203.
a(n) = (1/n)*Sum_{k=1..n} phi(gcd(n,k))*sigma(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
From Ridouane Oudra, Nov 12 2021: (Start)
a(n) = Sum_{j=1..n} Sum_{k=1..j} (1/j)*cos(2*k*n*Pi/j);
a(n) = Sum_{j=1..n} Sum_{k=1..j} (1/j)*e^(2*k*n*Pi*i/j), where i^2=-1. (End)

Extensions

Incorrect formula deleted by Ridouane Oudra, Oct 28 2021

A005237 Numbers k such that k and k+1 have the same number of divisors.

Original entry on oeis.org

2, 14, 21, 26, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 104, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 189, 201, 202, 205, 213, 214, 217, 218, 230, 231, 242, 243, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 344, 374, 375, 381, 387
Offset: 1

Views

Author

Keywords

Comments

Is a(n) asymptotic to c*n with 9 < c < 10? - Benoit Cloitre, Sep 07 2002
Let S = {(n, a(n)): n is a positive integer < 2*10^5}, where {a(n)} is the above sequence. The best-fit (least squares) line through S has equation y = 9.63976*x - 1453.76. S is very linear: the square of the correlation coefficient of {n} and {a(n)} is about 0.999943. - Joseph L. Pe, May 15 2003
I conjecture the contrary: the sequence is superlinear. Perhaps a(n) ~ n log log n. - Charles R Greathouse IV, Aug 17 2011
Erdős proved that this sequence is superlinear. Is a more specific result known? - Charles R Greathouse IV, Dec 05 2012
Heath-Brown proved that this sequence is infinite. Hildebrand and Erdős, Pomerance, & Sárközy show that n sqrt(log log n) << a(n) << n (log log n)^3, where << is Vinogradov notation. - Charles R Greathouse IV, Oct 20 2013

Examples

			14 is in the sequence because 14 and 15 are both in A030513. 104 is in the sequence because 104 and 105 are both in A030626.  - _R. J. Mathar_, Jan 09 2022
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A005237Q = DivisorSigma[0, #] == DivisorSigma[0, # + 1] &; Select[Range[387], A005237Q] (* JungHwan Min, Mar 02 2017 *)
    SequencePosition[DivisorSigma[0,Range[400]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 25 2019 *)
  • PARI
    is(n)=numdiv(n)==numdiv(n+1) \\ Charles R Greathouse IV, Aug 17 2011
    
  • Python
    from sympy import divisor_count as tau
    [n for n in range(1,401) if tau(n) == tau(n+1)] # Karl V. Keller, Jr., Jul 10 2020

Extensions

More terms from Jud McCranie, Oct 15 1997

A005238 Numbers k such that k, k+1 and k+2 have the same number of divisors.

Original entry on oeis.org

33, 85, 93, 141, 201, 213, 217, 230, 242, 243, 301, 374, 393, 445, 603, 633, 663, 697, 902, 921, 1041, 1105, 1137, 1261, 1274, 1309, 1334, 1345, 1401, 1641, 1761, 1832, 1837, 1885, 1893, 1924, 1941, 1981, 2013, 2054, 2101, 2133, 2181, 2217, 2264, 2305
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp. 12, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a005238 n = a005238_list !! (n-1)
    a005238_list = map (+ 1) $ elemIndices 0 $ zipWith (+) ds $ tail ds where
       ds = map abs $ zipWith (-) (tail a000005_list) a000005_list
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Mathematica
    Select[Range[2500],DivisorSigma[0,#]==DivisorSigma[0,#+1] == DivisorSigma[ 0,#+2]&] (* Harvey P. Dale, Nov 12 2012 *)
    Flatten[Position[Partition[DivisorSigma[0,Range[2500]],3,1],{x_,x_,x_}]] (* Harvey P. Dale, Jul 06 2015 *)
    SequencePosition[DivisorSigma[0,Range[2500]],{x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 03 2017 *)
  • PARI
    is(n)=my(d=numdiv(n)); numdiv(n+1)==d && numdiv(n+2)==d \\ Charles R Greathouse IV, Feb 06 2017

Extensions

More terms from Olivier Gérard

A006601 Numbers k such that k, k+1, k+2 and k+3 have the same number of divisors.

Original entry on oeis.org

242, 3655, 4503, 5943, 6853, 7256, 8392, 9367, 10983, 11605, 11606, 12565, 12855, 12856, 12872, 13255, 13782, 13783, 14312, 16133, 17095, 18469, 19045, 19142, 19143, 19940, 20165, 20965, 21368, 21494, 21495, 21512, 22855, 23989, 26885
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B18, pp. 111-113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A049051 (runs of 5), A049052 (runs of 6), A049053 (runs of 7).

Programs

Extensions

More terms from Olivier Gérard

A119479 Length of longest run of consecutive integers having exactly n divisors.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 5, 1, 7, 1, 3, 1
Offset: 1

Views

Author

Keywords

Comments

a(12) = 15. If there were 16 such consecutive integers, two would be consecutive multiples of 8. One would have the form 32p and the other the form 8q^2 with odd primes p and q; this implies that 8q^2 is congruent to 24 or 40 (mod 64), which is impossible. On the other hand Dmitry Petukhov found a run of 15 consecutive integers each having 12 divisors. It starts with 66387422053662391209161093722597723545. - Vladimir Letsko, Apr 07 2022
a(14) = 3. If there were 4, two would be consecutive even numbers. One would have the form 64p and the other the form 2q^6 with odd primes p and q. Since 2q^6 == 2 (mod 16), this implies that 2q^6 = 64p+2, so p = (q^3-1)(q^3+1)/32 is prime, which is impossible.
a(16) = 7. If there were 8, one would be congruent to 4 (mod 8), which is impossible.
Schinzel's conjecture H would imply that:
a(2p) = 3 for all prime p > 3;
a(2pq) = 3 for all primes p, q such that gcd(p-1,q-1) > 4;
a(6p) = 5 for all odd prime p;
a(n) = 7 for all n > 4 such that n is divisible by 4 and nondivisible by 3. - Vladimir Letsko, Jul 18 2016
From Vladimir Letsko, Apr 09 2022: (Start)
One of any 32 consecutive integers is divisible by 16 but not by 32. The number of divisors of such an integer is divisible by 5. Therefore a(24) <= 31 and a(48) <= 31.
768369049267672356024049141254832375543516 starts a run of 17 consecutive integers each having 24 divisors. Hence 17 <= a(24) <= 31.
17668887847524548413038893976018715843277693308027547 starts a run of 20 consecutive integers each having 48 divisors. Therefore 20 <= a(48) <= 31. (End)
From Vladimir Letsko, May 31 2022: (Start)
Using Dmitry Petukhov's programs, Eugene Zhilitsky found a chain of 13 consecutive numbers with 36 divisors each. It starts with 1041358820322424595598704771003665679363657167077976401029442221233039097. Hence 13 <= a(36) <= 15. (End)

Crossrefs

Formula

a(2n+1) = 1, since numbers with an odd number of divisors must be squares. If n is not divisible by 3, a(2n) <= 7.

Extensions

Edited by Dean Hickerson, Aug 01 2006
a(12)-a(23) added by Vladimir Letsko, Apr 07 2022

A034173 a(n) is minimal such that prime factorizations of a(n), ..., a(n)+n-1 have same exponents.

Original entry on oeis.org

1, 2, 33, 19940, 204323, 380480345, 440738966073
Offset: 1

Views

Author

Dean Hickerson, Oct 01 1998

Keywords

Comments

a(8) > 10^13. - Donovan Johnson, Oct 20 2009
Don Reble has shown that a(8) < 1.9*10^42, cf. link.
From David Wasserman, Jan 05 2019: (Start)
a(8) <= 108111092880293127811946663766147737122,
a(9) <= 6850672946809600696044301071559918192380244,
a(10) <= 96037988156124494415303285590850571857698741869620,
a(11) <= 9044737840075556371215937303485030235666252755947862558252154847122. (End)

Examples

			a(4) = 19940 because 19940, ..., 19943 all have the form p^2 q r.
		

Crossrefs

Cf. A034174.
Cf. A052213, A052214, A175590, A218448. This sequence is the first column of A083785 and first row of A113456. The latter generalizes to arithmetic progressions with step d>=1. - M. F. Hasler, Oct 28 2012

Programs

  • PARI
    A034173(n)={my(f);for(k=1,oo,f=0;for(i=1,n, f==(f=vecsort(factor(k+n-i)[,2])) || i==1 || [k+=n-i; next(2)]);return(k))} \\ M. F. Hasler, Oct 23 2012

Formula

a(n) = A034174(n) - n + 1. - Max Alekseyev, Nov 10 2009
a(n) = A083785(n,1) = A113456(1,n); a(2) = A052213(1), a(3) = A052214(1), a(4) = A175590(1), a(5) = A218448(1), a(6) = A218448(62) = A218448(63)-1. - M. F. Hasler, Oct 28 2012

Extensions

a(7) from Donovan Johnson, Oct 20 2009
Don Reble link repaired by N. J. A. Sloane, Oct 24 2024

A049051 Numbers k such that k through k+4 all have the same number of divisors.

Original entry on oeis.org

11605, 12855, 13782, 19142, 21494, 28374, 28375, 40311, 42805, 50582, 55254, 60231, 60663, 79094, 87655, 90181, 90182, 95845, 99655, 103621, 109765, 115591, 120727, 121045, 122151, 122871, 142454, 142806, 152630, 157493, 157494, 171893
Offset: 1

Views

Author

Keywords

Crossrefs

Other runs of equidivisor numbers: A005237 (runs of 2), A005238 (runs of 3), A006601 (runs of 4), A049052 (runs of 6), A049053 (runs of 7).

Programs

A019273 First run of n consecutive integers with same number of divisors ends at a(n).

Original entry on oeis.org

1, 3, 35, 245, 11609, 28379, 171899, 1043710445728, 2197379769828, 2642166652554084
Offset: 1

Views

Author

Keywords

Comments

The entry 40315 given in Guy and Wells is incorrect.
Terminating number in the sequence of consecutive integers with the same number of divisors in A006558. - Jud McCranie, Jan 14 2006

Examples

			phi(33)=phi(34)=phi(35), so a(3)=35
		

References

  • R. K. Guy "Unsolved Problems in Number Theory", section B18.
  • David Wells "Dictionary of Curious and Interesting Numbers" #40311.

Crossrefs

Extensions

More terms from Jud McCranie, Oct 04 2002
One more term from Jud McCranie, Jan 14 2006
a(10) by Jud McCranie, Nov 27 2018
Showing 1-10 of 41 results. Next