A115158 Number of divisors of A006558(n).
1, 2, 4, 6, 8, 8, 8, 24, 24, 24
Offset: 1
Examples
phi(33) = phi(34) = phi(35) = 4, so a(3)=4.
Crossrefs
Cf. A006558.
Extensions
a(10) from Jud McCranie, Nov 27 2018
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
phi(33) = phi(34) = phi(35) = 4, so a(3)=4.
G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 3*x^9 + ...
List([1..150],n->Tau(n)); # Muniru A Asiru, Mar 05 2019
divisors 1 = [1] divisors n = (1:filter ((==0) . rem n) [2..n `div` 2]) ++ [n] a = length . divisors -- James Spahlinger, Oct 07 2012
a000005 = product . map (+ 1) . a124010_row -- Reinhard Zumkeller, Jul 12 2013
function tau(n) i = 2; num = 1 while i * i <= n if rem(n, i) == 0 e = 0 while rem(n, i) == 0 e += 1 n = div(n, i) end num *= e + 1 end i += 1 end return n > 1 ? num + num : num end println([tau(n) for n in 1:104]) # Peter Luschny, Sep 03 2023
[ NumberOfDivisors(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
with(numtheory): A000005 := tau; [ seq(tau(n), n=1..100) ];
Table[DivisorSigma[0, n], {n, 100}] (* Enrique Pérez Herrero, Aug 27 2009 *) CoefficientList[Series[(Log[1 - q] + QPolyGamma[1, q])/(q Log[q]), {q, 0, 100}], q] (* Vladimir Reshetnikov, Apr 23 2013 *) a[ n_] := SeriesCoefficient[ (QPolyGamma[ 1, q] + Log[1 - q]) / Log[q], {q, 0, Abs@n}]; (* Michael Somos, Apr 25 2013 *) a[ n_] := SeriesCoefficient[ q/(1 - q)^2 QHypergeometricPFQ[ {q, q}, {q^2, q^2}, q, q^2], {q, 0, Abs@n}]; (* Michael Somos, Mar 05 2014 *) a[n_] := SeriesCoefficient[q/(1 - q) QHypergeometricPFQ[{q, q}, {q^2}, q, q], {q, 0, Abs@n}] (* Mats Granvik, Apr 15 2015 *) With[{M=500},CoefficientList[Series[(2x)/(1-x)-Sum[x^k (1-2x^k)/(1-x^k),{k,M}],{x,0,M}],x]] (* Mamuka Jibladze, Aug 31 2018 *)
numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
{a(n) = if( n==0, 0, numdiv(n))}; /* Michael Somos, Apr 27 2003 */
{a(n) = n=abs(n); if( n<1, 0, direuler( p=2, n, 1 / (1 - X)^2)[n])}; /* Michael Somos, Apr 27 2003 */
{a(n)=polcoeff(sum(m=1, n+1, sumdiv(m, d, (-log(1-x^(m/d) +x*O(x^n) ))^d/d!)), n)} \\ Paul D. Hanna, Aug 21 2014
from sympy import divisor_count for n in range(1, 20): print(divisor_count(n), end=', ') # Stefano Spezia, Nov 05 2018
[sigma(n, 0) for n in range(1, 105)] # Zerinvary Lajos, Jun 04 2009
14 is in the sequence because 14 and 15 are both in A030513. 104 is in the sequence because 104 and 105 are both in A030626. - _R. J. Mathar_, Jan 09 2022
A005237Q = DivisorSigma[0, #] == DivisorSigma[0, # + 1] &; Select[Range[387], A005237Q] (* JungHwan Min, Mar 02 2017 *) SequencePosition[DivisorSigma[0,Range[400]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 25 2019 *)
is(n)=numdiv(n)==numdiv(n+1) \\ Charles R Greathouse IV, Aug 17 2011
from sympy import divisor_count as tau [n for n in range(1,401) if tau(n) == tau(n+1)] # Karl V. Keller, Jr., Jul 10 2020
import Data.List (elemIndices) a005238 n = a005238_list !! (n-1) a005238_list = map (+ 1) $ elemIndices 0 $ zipWith (+) ds $ tail ds where ds = map abs $ zipWith (-) (tail a000005_list) a000005_list -- Reinhard Zumkeller, Oct 03 2012
Select[Range[2500],DivisorSigma[0,#]==DivisorSigma[0,#+1] == DivisorSigma[ 0,#+2]&] (* Harvey P. Dale, Nov 12 2012 *) Flatten[Position[Partition[DivisorSigma[0,Range[2500]],3,1],{x_,x_,x_}]] (* Harvey P. Dale, Jul 06 2015 *) SequencePosition[DivisorSigma[0,Range[2500]],{x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 03 2017 *)
is(n)=my(d=numdiv(n)); numdiv(n+1)==d && numdiv(n+2)==d \\ Charles R Greathouse IV, Feb 06 2017
import Data.List (elemIndices) a006601 n = a006601_list !! (n-1) a006601_list = map (+ 1) $ elemIndices 0 $ zipWith3 (((+) .) . (+)) ds (tail ds) (drop 2 ds) where ds = map abs $ zipWith (-) (tail a000005_list) a000005_list -- Reinhard Zumkeller, Jan 18 2014
f[n_]:=Length[Divisors[n]]; lst={};Do[If[f[n]==f[n+1]==f[n+2]==f[n+3],AppendTo[lst,n]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *) dsQ[n_]:=Length[Union[DivisorSigma[0,Range[n,n+3]]]]==1; Select[Range[ 30000],dsQ] (* Harvey P. Dale, Nov 23 2011 *) Flatten[Position[Partition[DivisorSigma[0,Range[27000]],4,1],?(Union[ Differences[ #]]=={0}&),{1},Heads->False]] (* Faster, because the number of divisors for each number is only calculated once *) (* _Harvey P. Dale, Nov 06 2013 *) SequencePosition[DivisorSigma[0,Range[27000]],{x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 03 2017 *)
is(n)=my(t=numdiv(n)); numdiv(n+1)==t && numdiv(n+2)==t && numdiv(n+3)==t \\ Charles R Greathouse IV, Jun 25 2017
a(4) = 19940 because 19940, ..., 19943 all have the form p^2 q r.
A034173(n)={my(f);for(k=1,oo,f=0;for(i=1,n, f==(f=vecsort(factor(k+n-i)[,2])) || i==1 || [k+=n-i; next(2)]);return(k))} \\ M. F. Hasler, Oct 23 2012
Flatten[Position[Partition[DivisorSigma[0,Range[200000]],5,1],?(Length[ Union[#]] == 1&),{1},Heads->False]] (* _Harvey P. Dale, May 30 2014 *) SequencePosition[DivisorSigma[0,Range[200000]],{x_,x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 03 2017 *)
phi(33)=phi(34)=phi(35), so a(3)=35
Comments