A007226
a(n) = 2*det(M(n; -1))/det(M(n; 0)), where M(n; m) is the n X n matrix with (i,j)-th element equal to 1/binomial(n + i + j + m, n).
Original entry on oeis.org
2, 3, 10, 42, 198, 1001, 5304, 29070, 163438, 937365, 5462730, 32256120, 192565800, 1160346492, 7048030544, 43108428198, 265276342782, 1641229898525, 10202773534590, 63698396932170, 399223286267190, 2510857763851185, 15842014607109600
Offset: 0
- Guy Bégin, On the enumeration of perforation patterns for punctured convolutional codes, Séries Formelles et Combinatoire Algébrique, 4th colloquium, 15-19 Juin 1992, Montréal, Université du Québec à Montréal, pp. 1-10.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..198
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Guy Bégin and David Haccoun, High rate punctured convolutions codes: Structure properties and construction techniques, IEEE Transactions on Communications 37(12) (1989), 1381-1385.
- Ryan C. Chen, Yujin H. Kim, Jared D. Lichtman, Steven J. Miller, Shannon Sweitzer, and Eric Winsor, Spectral Statistics of Non-Hermitian Random Matrix Ensembles, arXiv:1803.08127 [math-ph], 2018.
- Fabio Deelan Cunden, Marilena Ligabò, and Tommaso Monni, Random matrices associated to Young diagrams, arXiv:2301.13555 [math.PR], 2023. See p. 7.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, 339(3) (2016), 1116-1139.
- I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
- N. S. S. Gu, H. Prodinger, and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010), 720-732, Theorem 2 at k = 2.
- David Haccoun and Guy Bégin, High rate punctured convolutional codes for Viterbi and sequential coding, IEEE Transactions on Communications, 37(11) (1989), 1113-1125; see Section II.
- W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, arXiv:1304.6544 [math.PR], 2013.
- Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864.
-
[Binomial(3*n,n)/(2*n+1)+Binomial(3*n+1,n)/(n+1): n in [0..25]]; // Vincenzo Librandi, Aug 10 2014
-
A007226:=n->2*binomial(3*n,n)-binomial(3*n,n+1): seq(A007226(n), n=0..30); # Wesley Ivan Hurt, Aug 11 2014
-
Table[2*Binomial[3n,n]-Binomial[3n,n+1], {n,0,20}] (* Harvey P. Dale, Aug 10 2014 *)
-
a(n) = {my(M1=matrix(n,n)); my(M0=matrix(n,n)); for(i=1, n, for(j=1, n, M1[i,j] = 1/binomial(n+i+j-1,n); M0[i,j] = 1/binomial(n+i+j,n);)); 2*matdet(M1)/matdet(M0);} \\ Petros Hadjicostas, Jul 27 2020
A007228
a(n) = 3*binomial(4*n,n)/(n+1).
Original entry on oeis.org
3, 6, 28, 165, 1092, 7752, 57684, 444015, 3506100, 28242984, 231180144, 1917334783, 16077354108, 136074334200, 1160946392760, 9973891723635, 86210635955220, 749191930237608, 6541908910355280, 57369142749576660, 505045163173167760, 4461713825057817120
Offset: 0
From _Petros Hadjicostas_, Jul 29 2020: (Start)
We give some examples to illustrate the comment by _Sarah Selkirk_ about the total number of downs between the 1st and 2nd ups in a 2-Dyck path of length 4*(n+1). We denote by (+3) an up movement by a vector of (1,3) and by (-1) a down movement by a vector of (1,-1). We use powers to denote repetition of the same movement.
(i) For n = 0, we have the following 2-Dyck path of length 4 that contributes to a(0) = 3: (+3)(-1)^3 (no 2nd up here) with a total of 3 downs after the 1st up.
(ii) For n = 1, we have the following 2-Dyck paths of length 8 that contribute to a(1) = 6: (+3)(-1)(+3)(-1)^5, (+3)(-1)^2(+3)(-1)^4, and (+3)(-1)^3(+3)(-1)^3 with a contribution of 1 + 2 + 3 = 6 downs between the 1st and 2nd ups.
(iii) For n = 2, we have the following 2-Dyck paths of length 12 that contribute to a(2) = 28: (+3)(-1)(+3)(-1)^i(+3)(-1)^(8-i) for i = 0..5, (+3)(-1)^2(+3)(-1)^i(+3)^(7-i) for i = 0..4, and (+3)(-1)^3(+3)(-1)^i(+3)(-1)^(6-i) for i = 0..3 with a contribution of 1 x 6 + 2 x 5 + 3 x 4 = 28 downs between the 1st and 2nd ups. (End)
- Guy Bégin, On the enumeration of perforation patterns for punctured convolutional codes, Séries Formelles et Combinatoire Algébrique, 4th colloquium, 15-19 Juin 1992, Montréal, Université du Québec à Montréal, pp. 1-10.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
- Guy Bégin and David Haccoun, High rate punctured convolutions codes: Structure properties and construction techniques, IEEE Transactions on Communications 37(12) (1989), 1381-1385.
- Fabio Deelan Cunden, Marilena Ligabò, and Tommaso Monni, Random matrices associated to Young diagrams, arXiv:2301.13555 [math.PR], 2023. See p. 7.
- N. S. S. Gu, H. Prodinger, and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010), 720-732, Theorem 2 at k=3.
- David Haccoun and Guy Bégin, High rate punctured convolutional codes for Viterbi and sequential coding, IEEE Transactions on Communications, 37(11) (1989), 1113-1125; see Section II.
A334642
a(n) is the total number of down steps between the first and second up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
Original entry on oeis.org
0, 3, 9, 32, 139, 669, 3430, 18360, 101403, 573551, 3305445, 19340100, 114579348, 685962172, 4143459504, 25220816752, 154545611355, 952583230899, 5902090839715, 36738469359480, 229636903762035, 1440759023752125, 9070230371741490, 57278432955350880
Offset: 0
For n = 1, the 2_1-Dyck paths are UDD, DUD. This corresponds to a(1) = 2 + 1 = 3 down steps between the 1st up step and the end of the path.
For n = 2, the 2_1-Dyck paths are UUDDDD, UDUDDD, UDDUDD, UDDDUD, DUDDUD, DUDUDD, DUUDDD. In total, there are a(2) = 0 + 1 + 2 + 3 + 2 + 1 + 0 = 9 down steps between the 1st and 2nd up step.
-
a[0] = 0; a[n_] := 2 * Binomial[3*n, n]/(n + 1) - Binomial[3*n + 1, n]/(n + 1) + 4 * Binomial[3*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 24, 0] (* Amiram Eldar, May 09 2020 *)
-
a(n) = if (n==0, 0, 2*binomial(3*n, n)/(n+1) - binomial(3*n+1, n)/(n+1) + 4*binomial(3*(n-1), n-1)/n - 2*(n==1)); \\ Michel Marcus, May 09 2020
A334640
a(n) is the total number of down steps between the 2nd and 3rd up steps in all 2-Dyck paths of length 3*n. A 2-Dyck path is a nonnegative lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0.
Original entry on oeis.org
0, 0, 9, 19, 72, 324, 1595, 8307, 44982, 250648, 1427679, 8274825, 48644310, 289334160, 1738043892, 10529070020, 64252519830, 394601627376, 2437058926871, 15126463230165, 94306717535940, 590318477063700, 3708527622652755, 23374587898663155, 147770791807427880
Offset: 0
For n = 2, there are the 2-Dyck paths UUDDDD, UDUDDD, UDDUDD. Between the 2nd up step and the end of the path there are a(2) = 4 + 3 + 2 = 9 down steps in total.
-
b:= proc(x, y, u, c) option remember; `if`(x=0, c,
`if`(y+20, b(x-1, y-1, u, c+`if`(u=2, 1, 0)), 0))
end:
a:= n-> b(3*n, 0$3):
seq(a(n), n=0..24); # Alois P. Heinz, May 09 2020
# second Maple program:
a:= proc(n) option remember; `if`(n<3, [0$2, 9][n+1],
(3*(n-1)*(3*n-8)*(3*n-7)*(13*n-20)*a(n-1))/
(2*(13*n-33)*(n-2)*(2*n-3)*n))
end:
seq(a(n), n=0..24); # Alois P. Heinz, May 09 2020
-
a[0] = a[1] = 0; a[n_] := 2 * Sum[Binomial[3*j + 1, j] * Binomial[3*(n - j), n - j]/((3*j + 1)*(n - j + 1)), {j, 1, 2}]; Array[a, 25, 0] (* Amiram Eldar, May 09 2020 *)
-
a(n) = if (n<=1, 0, 2*sum(j=1, 2, binomial(3*j+1,j) * binomial(3*(n-j),n-j)/((3*j+1)*(n-j+1)))); \\ Michel Marcus, May 09 2020
A334641
a(n) is the total number of down steps between the 3rd and 4th up steps in all 2-Dyck paths of length 3*n.
Original entry on oeis.org
0, 0, 0, 43, 108, 444, 2099, 10683, 56994, 314296, 1776519, 10236081, 59892690, 354886920, 2125117332, 12839859620, 78176677734, 479177993904, 2954360065247, 18309779343549, 114001476318240, 712751759478780, 4472908385838795, 28165267333869435
Offset: 0
-
a[0] = a[1] = a[2] = 0; a[n_] := 2 * Sum[Binomial[3*j + 1, j] * Binomial[3*(n - j), n - j]/((3*j + 1)*(n - j + 1)), {j, 1, 3}]; Array[a, 24, 0] (* Amiram Eldar, May 09 2020 *)
-
a(n) = if (n<=2, 0, 2*sum(j=1, 3, binomial(3*j+1, j)*binomial(3*(n-j), n-j)/((3*j+1)*(n-j+1)))); \\ Michel Marcus, May 09 2020
A334651
a(n) is the total number of down steps between the first and second up steps in all 4_1-Dyck paths of length 5*n.
Original entry on oeis.org
0, 7, 25, 155, 1195, 10282, 94591, 910480, 9054965, 92310075, 959473878, 10129715890, 108327387675, 1170975480360, 12773887368040, 140445927510832, 1554748206904325, 17314584431331025, 193849445090545875, 2180550929942519685, 24632294533221865028
Offset: 0
For n = 1, the 4_1-Dyck paths are DUDDD, UDDDD. This corresponds to a(1) = 3 + 4 = 7 down steps between the 1st up step and the end of the path.
-
a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n + 1) - 3 * Binomial[5*n + 1, n]/(n + 1) + 8*Binomial[5*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
-
[4*binomial(5*n, n)/(n + 1) - 3*binomial(5*n + 1, n)/(n + 1) + 8*binomial(5*(n - 1), n - 1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)]
A241262
Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1
Array begins:
1, 3, 6, 10, 15, 21, ...
2, 10, 28, 60, 110, 182, ...
5, 42, 165, 455, 1020, 1995, ...
14, 198, 1092, 3876, 10626, 24570, ...
42, 1001, 7752, 35420, 118755, 324632, ...
132, 5304, 57684, 339300, 1391280, 4496388, ...
etc.
- N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2
-
t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten
Showing 1-7 of 7 results.
Comments