cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A287804 Number of quinary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 5, 17, 59, 205, 713, 2481, 8635, 30057, 104629, 364225, 1267923, 4413861, 15365465, 53490097, 186209299, 648230545, 2256616133, 7855718641, 27347281995, 95201200637, 331413874569, 1153716087665, 4016309864843, 13981555011321, 48672509644725
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2)=17=25-8 sequences contain every combination except these eight: 01,10,12,21,23,32,34,43.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -5, -1}, {1, 5, 17}, 50]
  • Python
    def a(n):
        if n in [0,1,2]:
            return [1,5,17][n]
        return 5*a(n-1)-5*a(n-2)-a(n-3)

Formula

a(n) = 5*a(n-1) - 5a(n-2) - a(n-3), a(0)=1, a(1)=5, a(2)=17.
G.f.: (1 - 3*x^2)/(1 - 5*x + 5*x^2 + x^3).

A287819 Number of nonary sequences of length n such that no two consecutive terms have distance 4.

Original entry on oeis.org

1, 9, 71, 561, 4433, 35031, 276827, 2187585, 17287073, 136608591, 1079529611, 8530826457, 67413620993, 532726379847, 4209793089371, 33267280400913, 262889866978817, 2077449112980255, 16416740845208075, 129730917736941417, 1025179795159015841
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 81 - 10 = 71 sequences contain every combination except these ten: 04,40,15,51,26,62,37,73,48,84.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8, 1, -14}, {1, 9, 71, 561}, 40]
  • Python
    def a(n):
        if n in [0, 1, 2, 3]:
            return [1, 9, 71, 561][n]
        return 8*a(n-1)+a(n-2)-14*a(n-3)

Formula

For n>2, a(n) = 8*a(n-1) + a(n-2) - 14*a(n-3), a(0)=1, a(1)=9, a(2)=71, a(3)=561.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 8 x - x^2 + 14 x^3).

A015530 Expansion of x/(1 - 4*x - 3*x^2).

Original entry on oeis.org

0, 1, 4, 19, 88, 409, 1900, 8827, 41008, 190513, 885076, 4111843, 19102600, 88745929, 412291516, 1915403851, 8898489952, 41340171361, 192056155300, 892245135283, 4145149007032, 19257331433977, 89464772757004
Offset: 0

Views

Author

Keywords

Comments

Let b(1)=1, b(k) = floor(b(k-1)) + 3/b(k-1); then for n>1, b(n) = a(n)/a(n-1). - Benoit Cloitre, Sep 09 2002
In general, x/(1 - a*x - b*x^2) has a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1,k)*b^k*a^(n-2k-1). - Paul Barry, Apr 23 2005
Pisano period lengths: 1, 2, 1, 4, 24, 2, 21, 4, 3, 24, 40, 4, 84, 42, 24, 8, 288, 6, 18, 24, ... . - R. J. Mathar, Aug 10 2012
This is the Lucas sequence U(4,-3). - Bruno Berselli, Jan 09 2013

Crossrefs

Appears in A179596, A126473 and A179597. - Johannes W. Meijer, Aug 01 2010
Cf. A080042: Lucas sequence V(4,-3).

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012
    
  • Mathematica
    LinearRecurrence[{4,3},{0,1},30] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-4*x-3*x^2))) \\ G. C. Greubel, Jan 24 2018
  • Sage
    [lucas_number1(n,4,-3) for n in range(0, 23)]# Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 4*a(n-1) + 3*a(n-2).
a(n) = (A086901(n+2) - A086901(n+1))/6. - Ralf Stephan, Feb 01 2004
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*3^k*4^(n-2k-1). - Paul Barry, Apr 23 2005
a(n) = ((2+sqrt(7))^n - (2-sqrt(7))^n)/sqrt(28). Offset 1. a(3)=19. - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit(a(n+k)/a(k), k=infinity) = A108851(n)+a(n)*sqrt(7).
Limit(A108851(n)/a(n), n=infinity) = sqrt(7). (End)
G.f.: x*G(0) where G(k)= 1 + (4*x+3*x^2)/(1 - (4*x+3*x^2)/(4*x + 3*x^2 + 1/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 28 2012
G.f.: G(0)*x/(2-4*x), where G(k)= 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013

A086347 On a 3 X 3 board, number of n-move routes of chess king ending in a given side square.

Original entry on oeis.org

1, 5, 24, 116, 560, 2704, 13056, 63040, 304384, 1469696, 7096320, 34264064, 165441536, 798822400, 3857055744, 18623512576, 89922273280, 434183143424, 2096421666816, 10122419240960, 48875363631104, 235991131488256, 1139465980477440, 5501828447862784
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

Number of aa-avoiding words of length n on alphabet {a,b,c,d,e}. - Tanya Khovanova, Jan 11 2007
Binomial transform of A164589 and second binomial transform of A096886. [Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009]
From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in a given side square m (m = 2, 4, 6, 8).
Inverse binomial transform of A001109 (without the leading 0).
(End)
Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the path graph P_n (see A235116). Example: a(1)=5; indeed, P_1 is the one-vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A,C}.
Number of simple paths from corner to diagonally opposite corner on a 2 X n grid with king moves allowed. - Andrew Howroyd, Nov 06 2019
Number of 4-compositions of n+1 restricted to parts 1 and 2 (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020

Examples

			a(3) = 116 = 5^3 - 9 (aaa, aab, aac, aad, aae, baa, caa, daa, eaa). [Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009]
		

Crossrefs

Row 2 of A329118.
Row sums of A235113.
Cf. A028859.
Cf. A126473. - Johannes W. Meijer, Aug 01 2010

Programs

  • Maple
    with(LinearAlgebra): nmax:=19; m:=2; A[5]:= [1,1,1,1,0,1,1,1,1]: A:=Matrix([[0,1,0,1,1,0,0,0,0],[1,0,1,1,1,1,0,0,0],[0,1,0,0,1,1,0,0,0],[1,1,0,0,1,0,1,1,0],A[5],[0,1,1,0,1,0,0,1,1],[0,0,0,1,1,0,0,1,0],[0,0,0,1,1,1,1,0,1],[0,0,0,0,1,1,0,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
    # second Maple program:
    a:= n-> (<<0|1>, <4|4>>^n. <<1, 5>>)[1,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 12 2022
  • Mathematica
    Table[(Sqrt[2]/32)((2+Sqrt[8])^(n+2)-(2-Sqrt[8])^(n+2)), {n, 0, 19}]

Formula

a(n) = (sqrt(2)/32)*((2+sqrt(8))^(n+2)-(2-sqrt(8))^(n+2)).
From Ralf Stephan, Feb 01 2004: (Start)
G.f.: (1+x)/(1-4*x-4*x^2).
a(n) = A057087(n) + A057087(n-1). (End)
a(n) = 4*a(n-1) + 4*a(n-2). - Tanya Khovanova, Jan 11 2007
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
E.g.f.: exp(2*x)*(4*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, Mar 17 2025

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010

A179596 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 2*x - 11*x^2 - 6*x^3).

Original entry on oeis.org

1, 3, 17, 73, 351, 1607, 7513, 34809, 161903, 751783, 3493353, 16227737, 75393055, 350251335, 1627192697, 7559508409, 35119644495, 163157037671, 757987215241, 3521419711833, 16359641017343, 76002822156295, 353090213774361
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010; edited Jun 21 2013

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the center square the king goes crazy and turns into a red king.
On a 3 X 3 chessboard there are 2^9 = 512 ways to go crazy on the center square (off the center the piece behaves like a normal king). The red king is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the corner squares the 512 red kings lead to 47 different red king sequences, see the overview of the red king sequences.
The sequence above corresponds to four A[5] vectors with decimal [binary] values 367 [101 101 111], 463 [111 001 111], 487 [111 100 111] and 493 [111 101 101]. These vectors lead for the side squares to A126473 and for the central square to A179597.
This sequence belongs to a family of sequences with g.f. (1+x)/(1 - 2*x - (k+8)*x^2 - 2*k*x^3). Red king sequences that are members of this family are A083424 (k=0), A179604 (k=1), A179600 (k=2), A179596 (k=3; this sequence) and A086346 (k=4). Other members of this family are A015528 (k=5) and A179608 (k=-4).

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.

Crossrefs

Cf. A180140 (berserker sequences).
Cf. Red king sequences corner squares [decimal value A[5]]: A086346 [495], A015525 [239], A179596 [367], A179600 [335], A015524 [95], A083858 [31], A179604 [327], A015523 [27], A179610 [85], A083424 [325], A015521 [11], A007482 [2], A014335 [16].

Programs

  • Maple
    nmax:=22; m:=1; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,0,1,1,1,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5], A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,11,6},{1,3,17},30] (* Harvey P. Dale, May 18 2011 *)
  • PARI
    Vec((1+x)/(1-2*x-11*x^2-6*x^3)+O(x^99)) \\ Charles R Greathouse IV, Jul 16 2011

Formula

G.f.: (1+x)/(1 - 2*x - 11*x^2 - 6*x^3).
a(n) = 2*a(n-1) + 11*a(n-2) + 6*a(n-3) with a(0)=1, a(1)=3 and a(2)=17.
a(n) = (-1)^(-n)*2^(n+1)/9 + ((49+17*sqrt(7))*A^(-n) + (49-17*sqrt(7))*B^(-n))/126 with A = (-2+sqrt(7))/3 and B = (-2-sqrt(7))/3.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n+1)*A000244(n)/(A015530(n)*sqrt(7) - A108851(n)).

A214992 Power ceiling-floor sequence of (golden ratio)^4.

Original entry on oeis.org

7, 47, 323, 2213, 15169, 103969, 712615, 4884335, 33477731, 229459781, 1572740737, 10779725377, 73885336903, 506417632943, 3471038093699, 23790849022949, 163064905066945, 1117663486445665, 7660579500052711
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2012, Jan 24 2013

Keywords

Comments

Let f = floor and c = ceiling. For x > 1, define four sequences as functions of x, as follows:
p1(0) = f(x), p1(n) = f(x*p1(n-1));
p2(0) = f(x), p2(n) = c(x*p2(n-1)) if n is odd and p2(n) = f(x*p1(n-1)) if n is even;
p3(0) = c(x), p3(n) = f(x*p3(n-1)) if n is odd and p3(n) = c(x*p3(n-1)) if n is even;
p4(0) = c(x), p4(n) = c(x*p4(n-1)).
The present sequence is given by a(n) = p3(n).
Following the terminology at A214986, call the four sequences power floor, power floor-ceiling, power ceiling-floor, and power ceiling sequences. In the table below, a sequence is identified with an A-numbered sequence if they appear to agree except possibly for initial terms. Notation: S(t)=sqrt(t), r = (1+S(5))/2 = golden ratio, and Limit = limit of p3(n)/p2(n).
x ......p1..... p2..... p3..... p4.......Limit
r^2.....A001519 A001654 A061646 A001906..-1+S(5)
r^3.....A024551 A001076 A015448 A049652..-1+S(5)
r^4.....A049685 A157335 A214992 A004187..-19+9*S(5)
r^5.....A214993 A049666 A015457 A214994...(-9+5*S(5))/2
r^6.....A007805 A156085 A214995 A049660..-151+68*S(5)
2+S(2)..A007052 A214996 A214997 A007070..(1+S(2))/2
1+S(3)..A057960 A002605 A028859 A077846..(1+S(3))/2
2+S(3)..A001835 A109437 A214998 A001353..-4+3*S(3)
S(5)....A214999 A215091 A218982 A218983..1.26879683...
2+S(5)..A024551 A001076 A015448 A049652..-1+S(5)
2+S(6)..A218984 A090017 A123347 A218985..S(3/2)
2+S(7)..A218986 A015530 A126473 A218987..(1+S(7))/3
2+S(8)..A218988 A057087 A086347 A218989..(1+S(2))/2
3+S(8)..A001653 A084158 A218990 A001109..-13+10*S(2)
3+S(10).A218991 A005668 A015451 A218992..-2+S(10)
...
Properties of p1, p2, p3, p4:
(1) If x > 2, the terms of p2 and p3 interlace: p2(0) < p3(0) < p2(1) < p3(1) < p2(2) < p3(2)... Also, p1(n) <= p2(n) <= p3(n) <= p4(n) <= p1(n+1) for all x>0 and n>=0.
(2) If x > 2, the limits L(x) = limit(p/x^n) exist for the four functions p(x), and L1(x) <= L2(x) <= L3(x) <= L4 (x). See the Mathematica programs for plots of the four functions; one of them also occurs in the Odlyzko and Wilf article, along with a discussion of the special case x = 3/2.
(3) Suppose that x = u + sqrt(v) where v is a nonsquare positive integer. If u = f(x) or u = c(x), then p1, p2, p3, p4 are linear recurrence sequences. Is this true for sequences p1, p2, p3, p4 obtained from x = (u + sqrt(v))^q for every positive integer q?
(4) Suppose that x is a Pisot-Vijayaraghavan number. Must p1, p2, p3, p4 then be linearly recurrent? If x is also a quadratic irrational b + c*sqrt(d), must the four limits L(x) be in the field Q(sqrt(d))?
(5) The Odlyzko and Wilf article (page 239) raises three interesting questions about the power ceiling function; it appears that they remain open.

Examples

			a(0) = ceiling(r) = 7, where r = ((1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1.  A214992 and related sequences *)
    x = GoldenRatio^4; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A049685 *)
    Table[p2[n], {n, 0, z}]  (* A157335 *)
    Table[p3[n], {n, 0, z}]  (* A214992 *)
    Table[p4[n], {n, 0, z}]  (* A004187 *)
    Table[p4[n] - p1[n], {n, 0, z}]  (* A004187 *)
    Table[p3[n] - p2[n], {n, 0, z}]  (* A098305 *)
    (* Program 2.  Plot of power floor and power ceiling functions, p1(x) and p4(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]];
    p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]];
    Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]
    (* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p2[x_, 0] := f[x]; p3[x_, 0] := c[x];
    p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]]
    p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]]
    Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]

Formula

a(n) = floor(r*a(n-1)) if n is odd and a(n) = ceiling(r*a(n-1)) if n is even, where a(0) = ceiling(r), r = (golden ratio)^4 = (7 + sqrt(5))/2.
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3).
G.f.: (7 + 5*x - x^2)/((1 + x)*(1 - 7*x + x^2)).
a(n) = (10*(-2)^n+(10+3*sqrt(5))*(7-3*sqrt(5))^(n+2)+(10-3*sqrt(5))*(7+3*sqrt(5))^(n+2))/(90*2^n). - Bruno Berselli, Nov 14 2012
a(n) = 7*A157335(n) + 5*A157335(n-1) - A157335(n-2). - R. J. Mathar, Feb 05 2020
E.g.f.: exp(-x)*(5 + 2*exp(9*x/2)*(155*cosh(3*sqrt(5)*x/2) + 69*sqrt(5)*sinh(3*sqrt(5)*x/2)))/45. - Stefano Spezia, Oct 28 2024

A287825 Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 10, 82, 674, 5540, 45538, 374316, 3076828, 25291120, 207889674, 1708825732, 14046322404, 115458919774, 949057110644, 7801124426174, 64124215108032, 527092600834054, 4332631742719370, 35613662169258228, 292739611493034596, 2406281042646218328
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -4, -21, 9, 5}, {1, 10, 82, 674, 5540, 45538}, 40]
  • Python
    def a(n):
        if n in [0, 1, 2, 3, 4, 5]:
            return [1, 10, 82, 674, 5540, 45538][n]
        return 9*a(n-1) - 4*a(n-2) - 21*a(n-3) + 9*a(n-4) + 5*a(n-5)

Formula

For n>5, a(n) = 9*a(n-1) - 4*a(n-2) - 21*a(n-3) + 9*a(n-4) + 5*a(n-5), a(0)=1, a(1)=10, a(2)=82, a(3)=674, a(4)=5540, a(5)=45538.
G.f.: (-1 - x + 4*x^2 + 3*x^3 - 3*x^4 - x^5)/(-1 + 9*x - 4*x^2 - 21*x^3 + 9*x^4 + 5*x^5).

A179597 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 5*x + 2*x^2)/(1 - 2*x - 11*x^2 - 6*x^3).

Original entry on oeis.org

1, 7, 27, 137, 613, 2895, 13355, 62233, 288741, 1342175, 6233899, 28964169, 134554277, 625117807, 2904117675, 13491856889, 62679715045, 291194561919, 1352817130667, 6284852732713, 29197861274277, 135646005392399
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010, Aug 10 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
For the central square the 512 red kings lead to 47 different red king sequences, see the cross-references for some examples.
The sequence above corresponds to four A[5] vectors with decimal [binary] values 367 [1,0,1,1,0,1,1,1,1], 463 [1,1,1,0,0,1,1,1,1], 487 [1,1,1,1,0,0,1,1,1] and 493 [1,1,1,1,0,1,1,0,1]. These vectors lead for the corner squares to A179596 and for the side squares to A126473.
This sequence belongs to a family of sequences with g.f. (1 + (k+2)*x + (2*k-4)*x^2)/(1 - 2*x - (k+8)*x^2 - (2*k)*x^3). Red king sequences that are members of this family are A179607 (k=0), A179605 (k=1), A179601 (k=2), A179597 (k=3; this sequence) and A086348 (k=4). Another member of this family is A179609 (k = -4).

Crossrefs

Red king sequences central square [numerical value A[5]]: A086348 [495], A179599 [239], A179597 [367], A179601 [335], A179603 [95], A154964 [31], A179605 [327], A179606 [27], A179611 [15], A179607 [325], A015521 [11], A007483 [2], A000012 [16], A000007 [0].

Programs

  • Maple
    with(LinearAlgebra): nmax:=21; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,0,1,1,1,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5], A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,11,6},{1,7,27},30] (* Harvey P. Dale, Mar 01 2015 *)

Formula

G.f.: (1 + 5*x + 2*x^2)/(1 - 2*x - 11*x^2 - 6*x^3).
a(n) = 2*a(n-1) + 11*a(n-2) + 6*a(n-3) with a(0) = 1, a(1) = 7 and a(2) = 27.
a(n) = 8*(-1/2)^(-n+1)/9 + ((7+11*sqrt(7))*A^(-n-1) + (7-11*sqrt(7))*B^(-n-1))/126 with A = (-2+sqrt(7))/3 and B = (-2-sqrt(7))/3.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n+1)*(A000244(n)/(A015530(n)*sqrt(7) - A108851(n))).

A254602 Numbers of n-length words on alphabet {0..7} with no subwords ii, where i is from {0..2}.

Original entry on oeis.org

1, 8, 61, 467, 3574, 27353, 209341, 1602152, 12261769, 93843143, 718210846, 5496691637, 42067895689, 321958728008, 2464050574501, 18858147661547, 144327286503334, 1104581743831073, 8453708639334181, 64698869194494632, 495160627558133329, 3789618738879406463
Offset: 0

Views

Author

Milan Janjic, Feb 02 2015

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 8^n else 7*Self(n)+5*Self(n-1): n in [0..25]];
    
  • Maple
    A254602:=n->(2^(-1-n) * ((7-sqrt(69))^n * (-9+sqrt(69)) + (7+sqrt(69))^n * (9+sqrt(69)))) / sqrt(69): seq(simplify(A254602(n)), n=0..30); # Wesley Ivan Hurt, Sep 08 2016
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 5 a[n - 2]}, a[n], {n, 0, 25}]
    LinearRecurrence[{7,5},{1,8},30] (* Harvey P. Dale, Jun 23 2017 *)
  • PARI
    Vec((1+x)/(1-7*x-5*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016

Formula

G.f.: (1 + x)/(1 - 7*x - 5*x^2).
a(n) = 7*a(n-1) + 5*a(n-2) with n>1, a(0) = 1, a(1) = 8.
a(n) = (2^(-1-n) * ((7-sqrt(69))^n * (-9+sqrt(69)) + (7+sqrt(69))^n * (9+sqrt(69)))) / sqrt(69). - Colin Barker, Sep 08 2016

A154244 a(n) = 6*a(n-1) - 2*a(n-2) for n>1; a(1)=1, a(2)=6.

Original entry on oeis.org

1, 6, 34, 192, 1084, 6120, 34552, 195072, 1101328, 6217824, 35104288, 198190080, 1118931904, 6317211264, 35665403776, 201358000128, 1136817193216, 6418187159040, 36235488567808, 204576557088768, 1154988365396992
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

Keywords

Comments

Binomial transform of A126473.
lim_{n -> infinity} a(n)/a(n-1) = 3+sqrt(7) = 5.6457513110....
a(n) equals the number of words of length n-1 over {0,1,2,3,4,5} avoiding 01 and 02. - Milan Janjic, Dec 17 2015

Crossrefs

Equals 1 followed by 2*A010913 (Pisot sequence E(3,17)).
Cf. A010465 (decimal expansion of square root of 7), A126473.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-7); S:=[ ((3+r)^n-(3-r)^n)/(2*r): n in [1..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
    
  • Magma
    I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 02 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,5}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{6, -2}, {1, 6}, 40] (* Vincenzo Librandi, Feb 02 2012 *)
  • Maxima
    a[1]:1$ a[2]:6$ a[n]:=6*a[n-1]-2*a[n-2]$ makelist(a[n], n, 1, 21); /* Bruno Berselli, May 30 2011 */
    
  • PARI
    Vec(1/(1-6*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 28 2011
  • Sage
    [lucas_number1(n,6,2) for n in range(1, 22)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = ((3 + sqrt(7))^n - (3 - sqrt(7))^n)/(2*sqrt(7)).
G.f.: x/(1-6*x+2*x^2). - Philippe Deléham, Jan 06 2009

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
Name (corrected) from Philippe Deléham, Jan 06 2009
Showing 1-10 of 57 results. Next