cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A132780 a(0)=1. a(n+1)=2*a(n)-A130151(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 15, 29, 57, 113, 227, 455, 911, 1821, 3641, 7281, 14563, 29127, 58255, 116509, 233017, 466033, 932067, 1864135, 3728271, 7456541, 14913081, 29826161, 59652323, 119304647, 238609295, 477218589, 954437177, 1908874353, 3817748707
Offset: 0

Views

Author

Paul Curtz, Nov 17 2007

Keywords

Comments

The first member of the sequences of the d'-th differences (that is, the diagonal of the pyramidal arrangement of repeated differences and essentially the binomial transform of 2*A113405) has the same absolute value as the first differences themselves, cf. the comment in A113405.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[MemberQ[{1,2,3},Mod[n+1,6]],2a-1,2a+1]}; NestList[ nxt, {0,1},40][[All,2]] (* Harvey P. Dale, Jul 06 2019 *)

Formula

First differences: a(n+1)-a(n)= 2*A113405(n).
O.g.f.: (1-x-x^2)/((1+x)(1-x+x^2)(1-2x)). - R. J. Mathar, Jul 16 2008

Extensions

Edited and extended by R. J. Mathar, Jul 16 2008

A057077 Periodic sequence 1,1,-1,-1; expansion of (1+x)/(1+x^2).

Original entry on oeis.org

1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

Abscissa of the image produced after n alternating reflections of (1,1) over the x and y axes respectively. Similarly, the ordinate of the image produced after n alternating reflections of (1,1) over the y and x axes respectively. - Wesley Ivan Hurt, Jul 06 2013

Crossrefs

Programs

Formula

G.f.: (1+x)/(1+x^2).
a(n) = S(n, 0) + S(n-1, 0) = S(2*n, sqrt(2)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 0)=A056594.
a(n) = (-1)^binomial(n,2) = (-1)^floor(n/2) = 1/2*((n+2) mod 4 - n mod 4). For fixed r = 0,1,2,..., it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A143621 (r = 2) and A143622 (r = 3). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(0) = cos(1) + sin(1), E(1) = cos(1) - sin(1) and E(k) is an integral linear combination of E(0) and E(1) (a Dobinski-type relation). Precisely, E(k) = A121867(k) * E(0) - A121868(k) * E(1). See A143623 and A143624 for the decimal expansions of E(0) and E(1) respectively. For a fixed value of r, similar relations hold between the values of the sums E_r(k) := Sum_{n>=0} (-1)^floor(n/r)*n^k/n!, k = 0,1,2,... . For particular cases see A000587 (r = 1) and A143628 (r = 3). - Peter Bala, Aug 28 2008
Sum_{k>=0} a(k)/(k+1) = Sum_{k>=0} 1/((a(k)*(k+1))) = log(2)/2 + Pi/4. - Jaume Oliver Lafont, Apr 30 2010
a(n) = (-1)^A180969(1,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010
a(n) = (-1)^((2*n+(-1)^n-1)/4) = i^((n-1)*n), with i=sqrt(-1). - Bruno Berselli, Dec 27 2010 - Aug 26 2011
Non-simple continued fraction expansion of (3+sqrt(5))/2 = A104457. - R. J. Mathar, Mar 08 2012
E.g.f.: cos(x)*(1 + tan(x)). - Arkadiusz Wesolowski, Aug 31 2012
From Ricardo Soares Vieira, Oct 15 2019: (Start)
E.g.f.: sin(x) + cos(x) = sqrt(2)*sin(x + Pi/4).
a(n) = sqrt(2)*(d^n/dx^n) sin(x)|_x=Pi/4, i.e., a(n) equals sqrt(2) times the n-th derivative of sin(x) evaluated at x=Pi/4. (End)
a(n) = 4*floor(n/4) - 2*floor(n/2) + 1. - Ridouane Oudra, Mar 23 2024

A028356 Simple periodic sequence underlying clock sequence A028354.

Original entry on oeis.org

1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4
Offset: 0

Views

Author

Keywords

Comments

From Klaus Brockhaus, May 15 2010: (Start)
Continued fraction expansion of (28+sqrt(2730))/56.
Decimal expansion of 1112/9009.
Partial sums of 1 followed by A130151.
First differences of A028357. (End)

References

  • Zdeněk Horský, "Pražský orloj" ("The Astronomical Clock of Prague", in Czech), Panorama, Prague, 1988, pp. 76-78.

Crossrefs

Cf. A177924 (decimal expansion of (28+sqrt(2730))/56), A130151 (repeat 1, 1, 1, -1, -1, -1), A028357 (partial sums of A028356). - Klaus Brockhaus, May 15 2010

Programs

  • Magma
    &cat [[1, 2, 3, 4, 3, 2]^^20]; // Klaus Brockhaus, May 15 2010
    
  • Maple
    A028356:=n->[1, 2, 3, 4, 3, 2][(n mod 6)+1]: seq(A028356(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
  • Mathematica
    CoefficientList[ Series[(1 + 2x + 3x^2 + 4x^3 + 3x^4 + 2x^5)/(1 - x^6), {x, 0, 85}], x]
    LinearRecurrence[{1,0,-1,1},{1,2,3,4},120] (* or *) PadRight[{},120,{1,2,3,4,3,2}] (* Harvey P. Dale, Apr 15 2016 *)
  • Python
    def A028356(n): return (1,2,3,4,3,2)[n%6] # Chai Wah Wu, Apr 18 2024
  • Sage
    def A():
        a, b, c, d = 1, 2, 3, 4
        while True:
            yield a
            a, b, c, d = b, c, d, a + (d - b)
    A028356 = A(); [next(A028356) for n in range(106)] # Peter Luschny, Jul 26 2014
    

Formula

Sum of any six successive terms is 15.
G.f.: (1 + 2*x + 3*x^2 + 4*x^3 + 3*x^4 + 2*x^5)/(1 - x^6).
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (15 - cos(n*Pi) - 8*cos(n*Pi/3))/6. (End)
E.g.f.: (15*exp(x) - exp(-x) - 8*cos(sqrt(3)*x/2)*(sinh(x/2) + cosh(x/2)))/6. - Ilya Gutkovskiy, Jun 23 2016
a(n) = abs(((n+3) mod 6)-3) + 1. - Daniel Jiménez, Jan 14 2023

Extensions

Additional comments from Robert G. Wilson v, Mar 01 2002

A260686 Period 6 zigzag sequence, repeat [0, 1, 2, 3, 2, 1].

Original entry on oeis.org

0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Wesley Ivan Hurt, Nov 15 2015

Keywords

Comments

Decimal expansion of 37/3003. - Elmo R. Oliveira, Mar 06 2024

Crossrefs

Period k zigzag sequences: A000035 (k=2), A007877 (k=4), this sequence (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).

Programs

  • Magma
    [1+(1-(-1)^n)/2-(-1)^Floor((n+1)/3): n in [0..100]]; // Bruno Berselli, Nov 16 2015
    
  • Magma
    &cat[[0,1,2,3,2,1]: n in [0..15]]; // Vincenzo Librandi, Nov 17 2015
  • Maple
    A260686:=n->[0, 1, 2, 3, 2, 1][(n mod 6)+1]: seq(A260686(n), n=0..100);
  • Mathematica
    CoefficientList[Series[(x + x^2 + x^3)/(1 - x + x^3 - x^4), {x, 0, 100}], x]
    Table[1 + (1 - (-1)^n)/2 - (-1)^Floor[(n + 1)/3], {n, 0, 100}] (* Bruno Berselli, Nov 16 2015 *)
    PadRight[{}, 120, {0, 1, 2, 3, 2, 1}] (* Vincenzo Librandi, Nov 17 2015 *)
  • PARI
    concat(0, Vec((x+x^2+x^3)/(1-x+x^3-x^4) + O(x^100))) \\ Altug Alkan, Nov 15 2015
    

Formula

G.f.: x*(1 + x + x^2) / (1 - x + x^3 - x^4).
a(n) = a(n-1) - a(n-3) + a(n-4) for n > 3.
a(n) = Sum_{i=1..n} (-1)^floor((i-1)/3) for n > 0.
a(n+1) = a(n) + A130151(n).
a(2n) = 2*A011655(n), a(2n+1) = A109007(n+2).
a(n) = 1 + (1 - (-1)^n)/2 - (-1)^floor((n+1)/3). - Bruno Berselli, Nov 16 2015
a(n) = sin(n*Pi/6)^2*(11+4*cos(n*Pi/3)+2*cos(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jun 17 2016
a(n) = a(n-6) for n >= 6. - Wesley Ivan Hurt, Sep 07 2022
a(n) = sqrt(n^2 mod 12) = sqrt(A070435(n)). - Nicolas Bělohoubek, May 24 2024

A257075 a(n) = (-1)^(n mod 3).

Original entry on oeis.org

1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1
Offset: 0

Views

Author

Michael Somos, Apr 15 2015

Keywords

Comments

Period 3: repeat [1, -1, 1]. - Wesley Ivan Hurt, Jul 02 2016

Examples

			G.f. = 1 - x + x^2 + x^3 - x^4 + x^5 + x^6 - x^7 + x^8 + x^9 - x^10 + ...
G.f. = q - q^3 + q^5 + q^7 - q^9 + q^11 + q^13 - q^15 + q^17 + q^19 + ...
		

Crossrefs

Essentially the same as A131561.

Programs

  • Magma
    [(-1)^(n mod 3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 02 2016
  • Maple
    A257075:=n->(-1)^(n mod 3): seq(A257075(n), n=0..100); # Wesley Ivan Hurt, Jul 02 2016
  • Mathematica
    a[ n_] := (-1)^Mod[n, 3]; Table[a[n], {n, 0, 100}]
    LinearRecurrence[{0,0,1},{1,-1,1},80] (* or *) PadRight[{},100,{1,-1,1}] (* Harvey P. Dale, May 25 2023 *)
  • PARI
    {a(n) = (-1)^(n%3)};
    
  • PARI
    {a(n) = 1 - 2 * (n%3 == 1)};
    
  • PARI
    {a(n) = [1, -1, 1][n%3 + 1]};
    
  • PARI
    {a(n) = my(A, p, e); n = abs(2*n + 1); A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==3, -1, 1))};
    

Formula

Euler transform of length 6 sequence [-1, 1, 2, 0, 0, -1].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = -1 if e>0, otherwise b(p^e) = 1.
a(n) = a(-1-n) = a(n+3) = -a(n-1)*a(n-2) for all n in Z.
G.f.: (1 - x + x^2) / (1 - x^3).
G.f.: (1 - x) * (1 - x^6) / ((1 - x^2) * (1 - x^3)^2).
G.f.: 1 / (1 + x / (1 + 2*x^2 / (1 - x / (1 - x / (1 + x))))).
Given g.f. A(x), then x*A(x^2) = Sum_{k>0} (x^k - x^(2*k)) - 2*(x^(3*k) - x^(6*k)).
a(n) = A131561(n+1) for all n in Z.
a(n) = (-1)^n * A130151(n) for all n in Z.
Convolution inverse is A257076.
PSUM transform is A008611.
BINOMIAL transform is A086953.
1 / (1 - a(0)*x / (1 - a(1)*x / (1 - a(2)*x / ...))) is the g.f. of A168505.
From Wesley Ivan Hurt, Jul 02 2016: (Start)
a(n) = (1 + 2*cos(2*n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3))/3.
a(n) = 2*sgn((n+2) mod 3) - 1. (End)
E.g.f.: (exp(3*x/2) + 4*sin(Pi/6-sqrt(3)*x/2))*exp(-x/2)/3. - Ilya Gutkovskiy, Jul 02 2016

A143621 a(n) = (-1)^binomial(n,4): Periodic sequence 1,1,1,1,-1,-1,-1,-1,... .

Original entry on oeis.org

1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1
Offset: 0

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

Periodic sequence with period 8. More generally, it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A057077 (r = 1) and A143622 (r = 3).
Nonsimple continued fraction expansion of A188943 = 1.767591879243... - R. J. Mathar, Mar 08 2012

Examples

			G.f. = 1 + x + x^2 + x^3 - x^4 - x^5 - x^6 - x^7 + x^8 + x^9 + x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a := n -> (-1)^binomial(n,4):
    seq(a(n),n = 0..103);
  • Mathematica
    Table[(-1)^Binomial[n, 4], {n, 0, 100}] (* Wesley Ivan Hurt, May 20 2014 *)
    a[ n_] := (-1)^Quotient[n, 4]; (* Michael Somos, May 05 2015 *)
    PadRight[{},120,{1,1,1,1,-1,-1,-1,-1}] (* Harvey P. Dale, Nov 29 2024 *)
  • PARI
    {a(n) = (-1)^(n \ 4)}; /* Michael Somos, Sep 30 2011 */
    
  • PARI
    x='x+O('x^99); Vec((1-x^4)^2/((1-x)*(1-x^8))) \\ Altug Alkan, Apr 15 2016
    
  • Python
    def A143621(n): return -1 if n&4 else 1 # Chai Wah Wu, Jan 18 2023

Formula

a(n) = (-1)^binomial(n,4) = (-1)^floor(n/4), since Sum_{k = 1..n-3} k*(k+1)(k+2)/3! = binomial(n,4) == floor(n/4) (mod 2) for n = 0,1,...,7 by calculation and both sides increase by an even number if we substitute n+8 for n.
a(n) = (1/4)*((n+4) mod 8 - n mod 8).
O.g.f.: (1+x+x^2+x^3)/(1+x^4) = (1+x)*(1+x^2)/(1+x^4) = (1-x^4)/((1-x)*(1+x^4)).
Define E(k) = Sum_{n>=0} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is an integral linear combination of E(0), E(1), E(2) and E(3) (a Dobinski-type relation).
a(n) = (-1)^A180969(2,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010
Euler transform of length 8 sequence [ 1, 0, 0, -2, 0, 0, 0, 1]. - Michael Somos, Sep 30 2011
G.f.: (1 - x^4)^2 / ((1 - x) * (1 - x^8)). a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Sep 30 2011
E.g.f.: sin(x/sqrt(2))*sinh(x/sqrt(2)) + (sqrt(2)*sin(x/sqrt(2)) + cos(x/sqrt(2)))*cosh(x/sqrt(2)). - Ilya Gutkovskiy, Apr 15 2016

A131562 a(n)= -3a(n-1) -3a(n-2)-2a(n-3), a(0)=1, a(1)=-2, a(2)=2.

Original entry on oeis.org

1, -2, 2, -2, 4, -10, 22, -44, 86, -170, 340, -682, 1366, -2732, 5462, -10922, 21844, -43690, 87382, -174764, 349526, -699050, 1398100, -2796202, 5592406, -11184812, 22369622, -44739242, 89478484, -178956970, 357913942, -715827884, 1431655766, -2863311530
Offset: 0

Views

Author

Paul Curtz, Aug 27 2007

Keywords

Crossrefs

Cf. A130707.

Programs

  • Mathematica
    LinearRecurrence[{-3,-3,-2},{1,-2,2},40] (* Harvey P. Dale, Jan 11 2017 *)

Formula

|v(n)| = 2^n+A130772(n); 2*|v(n)|-|v(n+1)|= 2*A057079(n), where v(n)=a(n+1)-a(n) are first differences.
O.g.f.: (1+x-x^2)/((1+2*x)*(1+x+x^2)). a(n)=(-1)^n*A130707(n). - R. J. Mathar, Jul 07 2008
Binomial transform yields A130151 without the first two terms. - R. J. Mathar, Jul 07 2008

Extensions

Edited by R. J. Mathar, Jul 07 2008

A143622 a(n) = (-1)^binomial(n,8): Periodic sequence 1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,... .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

Periodic sequence with period 16. More generally, it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A057077 (r = 1) and A143621 (r = 2).
Nonsimple continued fraction expansion of (47+sqrt(445))/42 = 1.62131007404... - R. J. Mathar, Mar 08 2012

Crossrefs

Programs

  • Maple
    with(combinat):
    a := n -> (-1)^binomial(n,8):
    seq(a(n),n = 0..95);

Formula

a(n) = (-1)^binomial(n,8) = (-1)^floor(n/8), since sum {k = 1..n-7} k*(k+1)*...*(k+6)/7! = binomial(n,8) == floor(n/8) (mod 2) for n = 0,1,...,15 by calculation and both sides increase by an even number if we substitute n+16 for n. a(n) = (1/8)*((n+8) mod 16 - n mod 16).
O.g.f.: (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)/(1+x^8) = (1+x)*(1+x^2)*(1+x^4)/(1+x^8) = (1-x^8)/((1-x)*(1+x^8)).
Define E(k) = Sum_{n>=0} a(n)*n^k/n! for k = 0,1,2,... . Then E(k) is a an integral linear combination of E(0),E(1),...,E(7) (a Dobinski-type relation).
a(n) = (-1)^A180969(3,n).

A132951 Period 6: repeat [1, 3, 1, -1, -3, -1].

Original entry on oeis.org

1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1
Offset: 0

Views

Author

Paul Curtz, Nov 22 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 3*a(n-1)-a(n-3)+3*a(n-4).
O.g.f.: (1+3*x+x^2)/((x+1)*(x^2-x+1)) = -(1/3)/(x+1)+(1/3)*(4*x+4)/(x^2-x+1). - R. J. Mathar, Nov 28 2007
a(n) = -(1/3)*(-1)^n+(4/3)*cos(Pi*n/3)+(4*3^0.5/3)*sin(Pi*n/3). - Richard Choulet, Jan 02 2008
a(n) = a(n-6) = A131531(n+3)+A131531(n+1)+3*A131531(n+2). - R. J. Mathar, Apr 04 2008
a(n) = A109007(n+2) * A130151(n). - Wesley Ivan Hurt, Jun 22 2013

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.

A168673 Binomial transform of A169609.

Original entry on oeis.org

1, 4, 10, 20, 38, 74, 148, 298, 598, 1196, 2390, 4778, 9556, 19114, 38230, 76460, 152918, 305834, 611668, 1223338, 2446678, 4893356, 9786710, 19573418, 39146836, 78293674, 156587350, 313174700, 626349398, 1252698794, 2505397588, 5010795178, 10021590358
Offset: 0

Views

Author

Paul Curtz, Dec 02 2009

Keywords

Comments

Sequence and successive differences are identical to their third differences. See principal sequence A024495. Main diagonal of the array of successive differences is A083595 (1,6,8,20,36,...).

Crossrefs

Programs

  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 3*Self(n-1)- 3*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 30 2016
    
  • Mathematica
    LinearRecurrence[{3,-3,2},{1,4,10},25] (* G. C. Greubel, Jul 29 2016 *)
    RecurrenceTable[{a[0] == 1, a[1] == 4, a[2] == 10, a[n] == 3 a[n-1] - 3 a[n-2] + 2 a[n-3]}, a, {n, 40}] (* Vincenzo Librandi, Jul 30 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 2,-3,3]^n*[1;4;10])[1,1] \\ Charles R Greathouse IV, Jul 30 2016

Formula

a(n+1) - 2a(n) = A130772(n).
a(n) = A062092(n) - A130151(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) for n > 2; a(0) = 1, a(1) = 4, a(2) = 10.
G.f.: (1 + x + x^2)/(1 -3*x +3*x^2 -2*x^3). - Philippe Deléham, Dec 03 2009

Extensions

Edited and extended by Klaus Brockhaus, Dec 03 2009
Showing 1-10 of 15 results. Next