A103134
a(n) = Fibonacci(6n+4).
Original entry on oeis.org
3, 55, 987, 17711, 317811, 5702887, 102334155, 1836311903, 32951280099, 591286729879, 10610209857723, 190392490709135, 3416454622906707, 61305790721611591, 1100087778366101931, 19740274219868223167, 354224848179261915075, 6356306993006846248183
Offset: 0
Cf.
A000032,
A000045,
A001906,
A001519,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A049310,
A049660,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(6*n +4): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[6n+4], {n, 0, 30}]
LinearRecurrence[{18,-1},{3,55},20] (* Harvey P. Dale, Mar 29 2023 *)
Table[ChebyshevU[3*n+1, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
a(n)=fibonacci(6*n+4) \\ Charles R Greathouse IV, Feb 05 2013
A134504
a(n) = Fibonacci(7n + 6).
Original entry on oeis.org
8, 233, 6765, 196418, 5702887, 165580141, 4807526976, 139583862445, 4052739537881, 117669030460994, 3416454622906707, 99194853094755497, 2880067194370816120, 83621143489848422977, 2427893228399975082453
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490,
A134491,
A134492,
A134493,
A134494,
A134495,
A103134,
A134497,
A134498,
A134499,
A134500,
A134501,
A134502,
A134503,
A134504.
-
[Fibonacci(7*n +6): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Table[Fibonacci[7n+6], {n, 0, 30}]
LinearRecurrence[{29,1},{8,233},20] (* Harvey P. Dale, Jul 21 2021 *)
-
a(n)=fibonacci(7*n+6) \\ Charles R Greathouse IV, Jun 11 2015
A100334
An inverse Catalan transform of Fibonacci(2n).
Original entry on oeis.org
0, 1, 2, 2, 0, -5, -13, -21, -21, 0, 55, 144, 233, 233, 0, -610, -1597, -2584, -2584, 0, 6765, 17711, 28657, 28657, 0, -75025, -196418, -317811, -317811, 0, 832040, 2178309, 3524578, 3524578, 0, -9227465, -24157817, -39088169, -39088169, 0, 102334155, 267914296, 433494437, 433494437, 0, -1134903170
Offset: 0
-
I:=[0,1,2,2]; [n le 4 select I[n] else 3*Self(n-1) -4*Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Jan 30 2023
-
Table[FullSimplify[GoldenRatio^n*Sqrt[2/5 + 2*Sqrt[5]/25]*Sin[Pi*n/5 + Pi/5] - (1/GoldenRatio)^n*Sqrt[2/5 - 2*Sqrt[5]/25]*Sin[2*Pi*n/5 + 2*Pi/5]], {n, 0, 41}] (* Arkadiusz Wesolowski, Oct 26 2012 *)
LinearRecurrence[{3,-4,2,-1}, {0,1,2,2}, 41] (* G. C. Greubel, Jan 30 2023 *)
-
def A100334(n): return sum((-1)^k*binomial(n-k,k)*fibonacci(2*n-2*k) for k in range(1+(n//2)))
[A100334(n) for n in range(41)] # G. C. Greubel, Jan 30 2023
A134494
a(n) = Fibonacci(6n+2).
Original entry on oeis.org
1, 21, 377, 6765, 121393, 2178309, 39088169, 701408733, 12586269025, 225851433717, 4052739537881, 72723460248141, 1304969544928657, 23416728348467685, 420196140727489673, 7540113804746346429, 135301852344706746049, 2427893228399975082453
Offset: 0
Cf.
A000045,
A001906,
A001519,
A015448,
A014445,
A033887-
A033891,
A049310,
A049660,
A099100,
A102312,
A103134,
A134490 -
A134504.
-
[Fibonacci(6*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
seq( combinat[fibonacci](6*n+2),n=0..10) ; # R. J. Mathar, Apr 17 2011
-
Table[Fibonacci[6n+2], {n, 0, 30}]
Table[ChebyshevU[3*n, 3/2], {n, 0, 20}] (* Vaclav Kotesovec, May 27 2023 *)
-
a(n)=fibonacci(6*n+2) \\ Charles R Greathouse IV, Jun 11 2015
-
Vec((1+3*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016
A134501
a(n) = Fibonacci(7n + 3).
Original entry on oeis.org
2, 55, 1597, 46368, 1346269, 39088169, 1134903170, 32951280099, 956722026041, 27777890035288, 806515533049393, 23416728348467685, 679891637638612258, 19740274219868223167, 573147844013817084101, 16641027750620563662096
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497 -
A134504.
A134502
a(n) = Fibonacci(7n + 4).
Original entry on oeis.org
3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
A134491
a(n) = Fibonacci(5n+4).
Original entry on oeis.org
3, 34, 377, 4181, 46368, 514229, 5702887, 63245986, 701408733, 7778742049, 86267571272, 956722026041, 10610209857723, 117669030460994, 1304969544928657, 14472334024676221, 160500643816367088
Offset: 0
A134489
a(n) = Fibonacci(5*n + 2).
Original entry on oeis.org
1, 13, 144, 1597, 17711, 196418, 2178309, 24157817, 267914296, 2971215073, 32951280099, 365435296162, 4052739537881, 44945570212853, 498454011879264, 5527939700884757, 61305790721611591, 679891637638612258
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888-
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
-
[Fibonacci(5*n+2): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
-
Table[Fibonacci[5n + 2], {n, 0, 30}]
LinearRecurrence[{11,1},{1,13},20] (* Harvey P. Dale, May 05 2022 *)
A138110
Table T(d,n) read column by column: the n-th term in the sequence of the d-th differences of A138112, d=0..4.
Original entry on oeis.org
0, 0, 0, 1, -1, 0, 0, 1, 0, -1, 0, 1, 1, -1, -1, 1, 2, 0, -2, -1, 3, 2, -2, -3, 0, 5, 0, -5, -3, 3, 5, -5, -8, 0, 8, 0, -13, -8, 8, 13, -13, -21, 0, 21, 13, -34, -21, 21, 34, 0, -55, 0, 55, 34, -34, -55, 55, 89, 0, -89, 0, 144, 89, -89, -144, 144, 233, 0, -233, -144, 377, 233, -233, -377, 0, 610, 0, -610, -377, 377
Offset: 0
All 5 rows of the table T(d,n) are:
.0,.0,.0,.1,.3,.5,.5,..0,-13,-34,-55,-55,...0,.144,...
.0,.0,.1,.2,.2,.0,-5,-13,-21,-21,..0,.55,.144,.233,...
.0,.1,.1,.0,-2,-5,-8,.-8,..0,.21,.55,.89,..89,...0,...
.1,.0,-1,-2,-3,-3,.0,..8,.21,.34,.34,..0,.-89,-233,...
-1,-1,-1,-1,.0,.3,.8,.13,.13,..0,-34,-89,-144,-144,...
A141053
Most-significant decimal digit of Fibonacci(5n+3).
Original entry on oeis.org
2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0
From _Johannes W. Meijer_, Jul 06 2011: (Start)
d p(N=2000) p(N=4000) p(N=6000) p(Benford)
1 0.29900 0.29950 0.30033 0.30103
2 0.17700 0.17675 0.17650 0.17609
3 0.12550 0.12525 0.12517 0.12494
4 0.09650 0.09675 0.09700 0.09691
5 0.07950 0.07950 0.07933 0.07918
6 0.06700 0.06675 0.06700 0.06695
7 0.05800 0.05825 0.05800 0.05799
8 0.05150 0.05125 0.05100 0.05115
9 0.04600 0.04600 0.04567 0.04576
Total 1.00000 1.00000 1.00000 1.00000 (End)
Cf.
A000045 (F(n)),
A008963 (Initial digit F(n)),
A105511-
A105519,
A003893 (F(n) mod 10),
A130893,
A186190 (First digit tribonacci),
A008952 (Leading digit 2^n),
A008905 (Leading digit n!),
A045510,
A112420 (Leading digit Collatz 3*n+1 starting with 1117065),
A007524 (log_10(2)),
A104140 (1-log_10(9)). -
Johannes W. Meijer, Jul 06 2011
Showing 1-10 of 11 results.
Comments