A078012
a(n) = a(n-1) + a(n-3) for n >= 3, with a(0) = 1, a(1) = a(2) = 0. This recurrence can also be used to define a(n) for n < 0.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925
Offset: 0
G.f. = 1 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + 9*x^10 + 13*x^11 + ...
- Taylor L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967, page 331ff.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Christian Ballot, On Functions Expressible as Words on a Pair of Beatty Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.2.
- C. K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f_n.]
- Taras Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae, Vol. 49 (2018), 75-84.
- Bahar Kuloğlu, Engin Özkan, and Marin Marin, On the period of Pell-Narayana sequence in some groups, arXiv:2305.04786 [math.CO], 2023.
- J. D. Opdyke, A unified approach to algorithms generating unrestricted.., J. Math. Model. Algor. 9 (2010) 53-97.
- Yüksel Soykan, Summing Formulas For Generalized Tribonacci Numbers, arXiv:1910.03490 [math.GM], 2019.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1).
-
a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-1]+a[n-3]; od; a; # G. C. Greubel, Jun 28 2019
-
a078012 n = a078012_list !! n
a078012_list = 1 : 0 : 0 : 1 : zipWith (+) a078012_list
(zipWith (+) (tail a078012_list) (drop 2 a078012_list))
-- Reinhard Zumkeller, Mar 23 2012
-
I:=[1,0,0]; [n le 3 select I[n] else Self(n-1) + Self(n-3): n in [1..50]]; // G. C. Greubel, Jan 19 2018
-
A078012 := proc(n): if n=0 then 1 else add(binomial(n-3-2*i,i),i=0..(n-3)/3) fi: end: seq(A078012(n), n=0..46); # Johannes W. Meijer, Aug 11 2011
# second Maple program:
a:= n-> (<<0|1|0>, <0|0|1>, <1|0|1>>^n)[1, 1]:
seq(a(n), n=0..46); # Alois P. Heinz, May 08 2025
-
CoefficientList[ Series[(1-x)/(1-x-x^3), {x,0,50}], x] (* Robert G. Wilson v, May 25 2011 *)
LinearRecurrence[{1,0,1}, {1,0,0}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
a[ n_]:= If[ n >= 0, SeriesCoefficient[ (1-x)/(1-x-x^3), {x, 0, n}], SeriesCoefficient[1/(1+x^2-x^3), {x, 0, -n}]]; (* Michael Somos, Feb 03 2018 *)
-
{a(n) = if( n<0, n = -n; polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, May 03 2011 */
-
((1-x)/(1-x-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 28 2019
Deleted certain dangerous or potentially dangerous links. -
N. J. A. Sloane, Jan 30 2021
A077868
Expansion of 1/((1-x)*(1-x-x^3)).
Original entry on oeis.org
1, 2, 3, 5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412
Offset: 0
- Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
- Hung Viet Chu, Various sequences from counting subsets, arXiv:2005.10081 [math.CO], 2020-2021.
- A. O. Munagi, Set Partitions with Successions and Separations, IJMMS 2005:3 (2005), 451-463.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1).
-
A077868:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+, j+1): j in [0..Floor((n+1)/3)]]) >;
[A077868(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2,-1,1,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..41); # Alois P. Heinz, Sep 05 2008
g:=(1+z+z^2)/(1-z-z^3): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-1, n=1..42); # Zerinvary Lajos, Jan 09 2009
-
LinearRecurrence[{1,1,0,0,-1}, {1,2,3,5,8,12}, 42] (* or *)
CoefficientList[Series[1/((1-x)(1-x-x^3)), {x, 0, 41}], x] (* Michael De Vlieger, Jun 06 2018 *)
-
Vec(1/(1-x)/(1-x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
{a = vector(50);
a[1] = 1; a[2] = 2; a[3] = 3;
for(n=4,50,
a[n] = 1 + a[n-1] + a[n-3];
); a} \\ Gerry Martens, Jun 03 2018
-
{a(n) = if( n<0, n=-4-n; polcoeff( -1 / (1 - x) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Jun 17 2018 */
-
def A077868(n): return sum(binomial(n-2*j+1, j+1) for j in (0..((n+1)//3)))
[A077868(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A077961
Expansion of 1 / (1 + x^2 - x^3) in powers of x.
Original entry on oeis.org
1, 0, -1, 1, 1, -2, 0, 3, -2, -3, 5, 1, -8, 4, 9, -12, -5, 21, -7, -26, 28, 19, -54, 9, 73, -63, -64, 136, 1, -200, 135, 201, -335, -66, 536, -269, -602, 805, 333, -1407, 472, 1740, -1879, -1268, 3619, -611, -4887, 4230, 4276, -9117, -46, 13393, -9071, -13439, 22464, 4368, -35903, 18096, 40271, -53999
Offset: 0
G.f. = 1 - x^2 + x^3 + x^4 - 2*x^5 + 3*x^7 - 2*x^8 - 3*x^9 + 5*x^10 + x^11 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
- Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See L_n.
- Index entries for linear recurrences with constant coefficients, signature (0,-1,1).
-
I:=[1,0,-1]; [n le 3 select I[n] else -Self(n-2) +Self(n-3): n in [1..70]]; // G. C. Greubel, Mar 28 2024
-
a:= n-> (<<0|1|0>, <-1|0|1>, <1|0|0>>^n)[1, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, Jun 20 2008
-
a[ n_] := If[ n >= 0, SeriesCoefficient[ 1 / (1 + x^2 - x^3), {x, 0, n}], SeriesCoefficient[ x^3 / (1 - x - x^3), {x, 0, -n}]] (* Michael Somos, Jan 08 2014 *)
-
{a(n) = if( n<0, polcoeff( x^3 / (1 - x - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Jan 08 2014 */
-
[sum((-1)^(n+k)*binomial(k,n-2*k) for k in range(1+n//2)) for n in range(71)] # G. C. Greubel, Mar 28 2024
A144903
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0
Square array (A(n,k)) begins:
0, 0, 0, 0, 0, 0, 0 ... A000004;
1, 1, 1, 1, 1, 1, 1 ... A000012;
0, 1, 2, 3, 4, 5, 6 ... A001477;
0, 1, 3, 6, 10, 15, 21 ... A000217;
1, 2, 5, 11, 21, 36, 57 ... A050407;
1, 3, 8, 19, 40, 76, 133 ... ;
1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 0;
0, 1, 2, 1, 1;
0, 1, 3, 3, 2, 1;
0, 1, 4, 6, 5, 3, 1;
0, 1, 5, 10, 11, 8, 4, 2;
0, 1, 6, 15, 21, 19, 12, 6, 3;
-
A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >;
A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >;
[A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
-
A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
-
(* First program *)
a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
(* Second Program *)
A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}];
T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
-
def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3)))
def A144903(n,k):
if (k==0): return 0
else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1))
flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022
A050228
a(n) is the number of subsequences {s(k)} of {1,2,3,...n} such that s(k+1)-s(k) is 1 or 3.
Original entry on oeis.org
1, 3, 6, 11, 19, 31, 49, 76, 116, 175, 262, 390, 578, 854, 1259, 1853, 2724, 4001, 5873, 8617, 12639, 18534, 27174, 39837, 58396, 85596, 125460, 183884, 269509, 394999, 578914, 848455, 1243487, 1822435, 2670925, 3914448, 5736920, 8407883
Offset: 1
- Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Hung Viet Chu, Various sequences from counting subsets, arXiv:2005.10081 [math.CO], 2020-2021.
- Z. Kasa, On scattered subword complexity, arXiv preprint arXiv:1104.4425 [cs.DM], 2011.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-2,1).
-
A050228:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+1, j+2): j in [0..Floor((n+1)/3)]]) >;
[A050228(n): n in [1..40]]; // G. C. Greubel, Jul 27 2022
-
with(combstruct): SubSetSeqU := [T, {T=Subst(U,U), S=Set(U, card>=3), U=Sequence(Z, card>=3)}, unlabeled]: seq(count(SubSetSeqU, size=n), n=9..46); # Zerinvary Lajos, Mar 18 2008
-
Rest[CoefficientList[Series[1/((1-x)^2*(1-x-x^3)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 27 2017 *)
LinearRecurrence[{3,-3,2,-2,1},{1,3,6,11,19},50] (* Harvey P. Dale, Apr 21 2020 *)
-
my(x='x+O('x^50)); Vec(x/((1-x)^3-x^3*(1-x)^2)) \\ G. C. Greubel, Apr 27 2017
-
def A050228(n): return sum(binomial(n-2*j+1, j+2) for j in (0..((n+1)//3)))
[A050228(n) for n in (1..40)] # G. C. Greubel, Jul 27 2022
A144898
Expansion of x/((1-x-x^3)*(1-x)^4).
Original entry on oeis.org
0, 1, 5, 15, 36, 76, 147, 267, 463, 775, 1262, 2011, 3150, 4867, 7438, 11268, 16951, 25358, 37766, 56047, 82945, 122482, 180553, 265798, 390880, 574358, 843432, 1237966, 1816384, 2664311, 3907237, 5729077, 8399372, 12313154, 18049371, 26456513, 38778103
Offset: 0
-
A144898:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+3, j+4): j in [0..Floor((n+3)/3)]]) >;
[A144898(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(7, (i, j)-> if i=j-1 then 1 elif j=1 then [5, -10, 11, -9, 7, -4, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[ x/((1-x-x^3)(1-x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144898(n): return sum(binomial(n-2*j+3, j+4) for j in (0..((n+3)//3)))
[A144898(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A144899
Expansion of x/((1-x-x^3)*(1-x)^5).
Original entry on oeis.org
0, 1, 6, 21, 57, 133, 280, 547, 1010, 1785, 3047, 5058, 8208, 13075, 20513, 31781, 48732, 74090, 111856, 167903, 250848, 373330, 553883, 819681, 1210561, 1784919, 2628351, 3866317, 5682701, 8347012, 12254249, 17983326, 26382698, 38695852, 56745223, 83201736
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-20,16,-11,5,-1).
-
A144899:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+4, j+5): j in [0..Floor((n+4)/3)]]) >;
[A144899(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(8, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 21, -20, 16, -11, 5, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[x/((1-x-x^3)(1-x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144899(n): return sum(binomial(n-2*j+4, j+5) for j in (0..((n+4)//3)))
[A144899(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A226405
Expansion of x/((1-x-x^3)*(1-x)^3).
Original entry on oeis.org
0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393
Offset: 0
Cf.
A000930,
A050228,
A077868,
A144898,
A144899,
A144900,
A144901,
A144902,
A144903,
A144904,
A226405.
-
A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >;
[A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
LinearRecurrence[{4,-6,5,-4,3,-1}, {0,1,4,10,21,40}, 40] (* Bruno Berselli, Jun 07 2013 *)
CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017
-
def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3)))
[A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A107458
Expansion of g.f.: (1-x^2-x^3)/( (1+x)*(1-x-x^3) ).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, 24, 36, 52, 77, 112, 165, 241, 354, 518, 760, 1113, 1632, 2391, 3505, 5136, 7528, 11032, 16169, 23696, 34729, 50897, 74594, 109322, 160220, 234813, 344136, 504355, 739169, 1083304, 1587660, 2326828, 3410133, 4997792, 7324621
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- C. Kenneth Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f^2_n.]
- Renata Passos Machado Vieira, and Francisco Regis Vieira Alves, Sequences of Tridovan and their identities, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 185-197. Sequence (T_n) is a subsequence of this sequence.
- Renata Passos Machado Vieira, Francisco Regis Vieira Alves, and Paula Maria Machado Cruz Catarino, A note on the Tetrarrin sequence, Braz. Elect. J. Math. (2024).
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1).
-
a:=[1,0,0,0];; for n in [5..50] do a[n]:=a[n-2]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 03 2020
-
a107458 n = a107458_list !! n
a107458_list = 1 : 0 : 0 : 0 : zipWith (+) a107458_list
(zipWith (+) (tail a107458_list) (drop 2 a107458_list))
-- Reinhard Zumkeller, Mar 23 2012
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(1-x^2-x^3)/( (1+x)*(1-x-x^3))); // Marius A. Burtea, Jan 02 2020
-
seq(coeff(series( (1-x^2-x^3)/( (1+x)*(1-x-x^3) ), x, n+1), x, n), n = 0..50); # G. C. Greubel, Jan 03 2020
-
CoefficientList[Series[(1-x^2-x^3)/(1-x^2-x^3-x^4),{x,0,50}],x] (* or *) LinearRecurrence[{0,1,1,1},{1,0,0,0},50] (* Harvey P. Dale, Jun 20 2011 *)
-
my(x='x+O('x^50)); Vec((1-x^2-x^3)/((1+x)*(1-x-x^3))) \\ G. C. Greubel, Apr 27 2017
-
def A107458_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x^2-x^3)/((1+x)*(1-x-x^3)) ).list()
A107458_list(50) # G. C. Greubel, Jan 03 2020
Showing 1-9 of 9 results.
Comments