cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A136019 Smallest prime of the form (prime(k)+2*n)/(2*n+1), any k.

Original entry on oeis.org

3, 3, 5, 3, 3, 5, 3, 7, 11, 3, 3, 5, 5, 3, 11, 3, 3, 5, 3, 3, 5, 5, 7, 5, 3, 3, 7, 5, 13, 7, 3, 3, 5, 3, 13, 5, 3, 7, 5, 3, 3, 13, 5, 3, 7, 5, 3, 5, 3, 7, 7, 3, 7, 11, 3, 3, 5, 11, 3, 7, 7, 3, 5, 11, 3, 13, 3, 7, 5, 3, 7, 11, 7, 13, 7, 3, 3, 11, 23, 7, 5, 3, 31, 5, 13, 3, 5, 5, 3, 7, 3, 13, 7, 3, 3, 5, 7
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Comments

The associated prime(k) are in A136020.

Examples

			a(1)=3 because 3 is smallest prime of the form (p+2)/3; in this case prime(k)=7.
a(2)=3 because 3 is smallest prime of the form (p+4)/5; in this case prime(k)=11.
a(3)=5 because 5 is smallest prime of the form (p+6)/7; in this case prime(k)=29.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to allow prime(k) <= N
    Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N-1)/2))]):
    f:= proc(t,n)
      local s;
      s:= (t+2*n)/(1+2*n);
      type(s,integer) and isprime(s)
    end proc:
    for n from 1 do
      p:= ListTools:-SelectFirst(f, Primes,n);
      if p = NULL then break fi;
      A[n]:= (p+2*n)/(1+2*n);
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Sep 08 2014
  • Mathematica
    a = {}; Do[k = 1; While[ !PrimeQ[(Prime[k] + 2n)/(2n + 1)], k++ ]; AppendTo[a, (Prime[k] + 2n)/(2n + 1)], {n, 1, 200}]; a
    sp[n_]:=Module[{k=1},While[!PrimeQ[(Prime[k]+2n)/(2n+1)],k++];(Prime[ k]+2n)/(2n+1)]; Array[sp,100] (* Harvey P. Dale, May 20 2021 *)
  • PARI
    a(n)=my(N=2*n,k=0,t);forprime(p=2,default(primelimit),k++;t=(p+N)/(N+1);if(denominator(t)==1&isprime(t),return(t))) \\ Charles R Greathouse IV, Jun 16 2011

Extensions

Edited by R. J. Mathar, May 17 2009

A088878 Prime numbers p such that 3p - 2 is a prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 37, 43, 47, 53, 61, 67, 71, 103, 113, 127, 137, 163, 167, 181, 191, 193, 211, 251, 257, 263, 271, 277, 293, 307, 313, 331, 337, 347, 373, 401, 431, 433, 443, 461, 467, 487, 491, 523, 541, 557, 587, 593, 601, 673, 677, 727, 751, 757, 761
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 27 2003

Keywords

Comments

Indices of semiprime octagonal numbers. - Jonathan Vos Post, Feb 16 2006
Daughter primes of order 1. - Artur Jasinski, Dec 12 2007
A010051(3*a(n)-2) = 1. - Reinhard Zumkeller, Jul 02 2015

Examples

			For p = 3, 3p - 2 = 7;
for p = 523, 3p - 2 = 1567.
		

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Haskell
    a088878 n = a088878_list !! (n-1)
    a088878_list = filter ((== 1) . a010051' . subtract 2 . (* 3)) a000040_list
    -- Reinhard Zumkeller, Jul 02 2015
  • Magma
    [ p: p in PrimesUpTo(770) | IsPrime(3*p-2) ]; // Klaus Brockhaus, Dec 21 2008
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[3*p-2],AppendTo[lst,p]],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 22 2008 *)
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
    Select[Prime[Range[150]],PrimeQ[3#-2]&] (* Harvey P. Dale, Feb 27 2024 *)
  • PARI
    list(lim)=select(p->isprime(3*p-2),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    

Extensions

Corrected and extended by Ray Chandler, Dec 27 2003
Entry revised by N. J. A. Sloane, Nov 28 2006, Jul 08 2010

A023208 Primes p such that 3*p + 2 is also prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 59, 79, 83, 89, 97, 103, 127, 139, 149, 163, 167, 173, 197, 199, 227, 233, 239, 257, 269, 293, 313, 317, 337, 349, 353, 367, 383, 397, 409, 419, 433, 439, 457, 479, 499, 503, 523, 569, 577, 607, 643, 659, 709, 757, 769, 797, 859, 863
Offset: 1

Views

Author

Keywords

Comments

Also, son primes of order 1. For smallest son primes of order n see A136027 (also definition). For son primes of order 2 see A136082. - Artur Jasinski, Dec 12 2007

Crossrefs

Programs

  • Haskell
    a023208 n = a023208_list !! (n-1)
    a023208_list = filter ((== 1) . a010051 . (+ 2) . (* 3)) a000040_list
    -- Reinhard Zumkeller, Aug 15 2011
  • Magma
    [n: n in PrimesUpTo(900) | IsPrime(3*n+2)]; // Vincenzo Librandi, Nov 20 2010
    
  • Mathematica
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a (* Artur Jasinski, Dec 12 2007 *)
  • PARI
    isA023208(n) = isprime(n) && isprime(3*n+2) \\ Michael B. Porter, Jan 30 2010
    

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar

A136026 Smallest prime of the form (2n+1)p + 2n with p prime.

Original entry on oeis.org

11, 19, 41, 53, 43, 103, 59, 67, 113, 83, 137, 149, 107, 173, 433, 131, 139, 443, 233, 163, 257, 179, 281, 293, 1019, 211, 439, 227, 353, 487, 251, 389, 401, 827, 283, 1021, 449, 307, 631, 647, 331, 509, 347, 1601, 727, 557, 379, 1163, 593, 2423, 617, 419, 641
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Comments

The associated p are in A136027.

Examples

			a(1)=11 because 11 is smallest prime p such that (p-2)/3 is prime.
a(2)=19 because 19 is smallest prime p such that (p-4)/5 is prime.
a(3)=41 because 41 is smallest prime p such that (p-6)/7 is prime.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ !PrimeQ[(Prime[k] - 2n)/(2n + 1)], k++ ]; AppendTo[a, Prime[k]], {n, 1, 100}]; a
  • PARI
    a(n)=my(t);forprime(p=2,,if(isprime(t=2*n*(p+1)+p),return(t))) \\ Charles R Greathouse IV, Mar 21 2013

Extensions

Edited by R. J. Mathar, May 17 2009

A136027 Smallest prime of the form (p-2n)/(2n+1) with p prime.

Original entry on oeis.org

3, 3, 5, 5, 3, 7, 3, 3, 5, 3, 5, 5, 3, 5, 13, 3, 3, 11, 5, 3, 5, 3, 5, 5, 19, 3, 7, 3, 5, 7, 3, 5, 5, 11, 3, 13, 5, 3, 7, 7, 3, 5, 3, 17, 7, 5, 3, 11, 5, 23, 5, 3, 5, 5, 3, 5, 7, 3, 11, 7, 3, 3, 5, 5, 3, 5, 5, 3, 11, 3, 3, 13, 3, 11, 11, 7, 3, 5, 5, 3, 5, 3, 11, 5, 3, 3, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Comments

The associated p are in A136026.

Examples

			a(1)=3 because 3 is smallest prime of the form (p-2)/3; in this case prime(k)=11.
a(2)=3 because 3 is smallest prime of the form (p-4)/5; in this case prime(k)=19.
a(3)=5 because 5 is smallest prime of the form (p-6)/7; in this case prime(k)=41.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ !PrimeQ[(Prime[k] - 2n)/(2n + 1)], k++ ]; AppendTo[a, (Prime[k] - 2n)/(2n + 1)], {n, 1, 100}]; a
  • PARI
    a(n)=forprime(p=2,,if(isprime(2*n*(p+1)+p),return(p))) \\ Charles R Greathouse IV, Mar 21 2013

Extensions

Edited by R. J. Mathar, May 17 2009

A091180 Primes of the form 3*p - 2 such that p is a prime.

Original entry on oeis.org

7, 13, 19, 31, 37, 67, 109, 127, 139, 157, 181, 199, 211, 307, 337, 379, 409, 487, 499, 541, 571, 577, 631, 751, 769, 787, 811, 829, 877, 919, 937, 991, 1009, 1039, 1117, 1201, 1291, 1297, 1327, 1381, 1399, 1459, 1471, 1567, 1621, 1669, 1759, 1777, 1801
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Comments

Mother primes of order 1. - Artur Jasinski, Dec 12 2007

Examples

			From _K. D. Bajpai_, Jun 20 2015: (Start)
a(4) = 31: 3*11 - 2 = 31; A088878(4) = 11.
a(6) = 67: 3*23 - 2 = 67; A088878(6) = 23.
(End)
		

Crossrefs

Programs

  • Magma
    [ k: p in PrimesUpTo(1000) | IsPrime(k)  where k is (3*p-2) ]; // K. D. Bajpai, Jun 20 2015
  • Maple
    A091180:= n-> (3*ithprime(n)-2): select(isprime,[seq((A091180(n), n=1..100))]);  # K. D. Bajpai, Jun 20 2015
  • Mathematica
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 500}]; a (* Artur Jasinski, Dec 12 2007 *)
    Select[Table[3*Prime[n] - 2,{n, 1000}], PrimeQ] (* K. D. Bajpai, Jun 20 2015 *)
  • PARI
    forprime(p =  1, 1000, k =( 3*p -2); if ( isprime(k), print1(k, ", "))); \\  K. D. Bajpai, Jun 20 2015
    

Formula

a(n) = 3*A088878(n)-2.

Extensions

Name clarified by Jinyuan Wang, Aug 06 2021

A139075 Primes p arising in A139074.

Original entry on oeis.org

3, 2, 3, 31, 1009, 2, 5702401, 631
Offset: 1

Views

Author

Artur Jasinski, Apr 08 2008, Apr 21 2008

Keywords

Comments

a(23) = (23+1579!)/23. - Andrew V. Sutherland, Apr 11 2008.
Smallest mother factorial prime p of order n, i.e. smallest prime of the form (p!+n)/n where p is prime.
For smallest daughter factorial prime p of order n see A139074.
For smallest father factorial prime p of order n see A139207.
For smallest son factorial prime p of order n see A139206.
a(9)=26737!/9+1 is a 106758 digit (probable) prime. Easily calculated but too large to enter here a(10)=13, a(11)=566092801, a(12)=11. [Robert Price, Jan 19 2011]

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[(Prime[k]! + n)/n]], {n, 1, 8}]; a

A136082 Son primes of order 5.

Original entry on oeis.org

3, 11, 17, 23, 41, 53, 59, 107, 131, 167, 173, 179, 191, 257, 263, 269, 389, 401, 431, 461, 467, 479, 521, 563, 569, 599, 647, 653, 677, 683, 719, 773, 821, 839, 857, 887, 947, 971, 1031, 1049, 1061, 1091, 1103, 1151, 1181, 1217, 1223, 1259, 1277, 1301
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235.
Numbers in this sequence are those primes p such that 11*p + 10 is also prime. Generally, son primes of order n are the primes p such that (2n+1)*p + 2n is also prime. - Bob Selcoe, Apr 04 2015

Crossrefs

Programs

  • Mathematica
    n = 5; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=10;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)
    Select[Prime[Range[250]],PrimeQ[11#+10]&] (* Harvey P. Dale, Aug 07 2021 *)

A136083 Son primes of order 6.

Original entry on oeis.org

7, 13, 17, 23, 29, 43, 53, 67, 79, 83, 109, 113, 127, 149, 157, 163, 179, 193, 227, 233, 239, 277, 283, 293, 307, 317, 347, 349, 359, 367, 373, 433, 449, 457, 487, 503, 557, 563, 587, 619, 647, 653, 673, 727, 739, 769, 773, 787, 809, 823, 829, 883, 919, 947
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082.

Crossrefs

Programs

  • Mathematica
    n = 6; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=12;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A139089 a(n) = prime(n)!/9 + 1.

Original entry on oeis.org

561, 4435201, 691891201, 39520825344001, 13516122267648001, 2872446304320552960001, 982417999304411328282624000001, 913648739353102535302840320000001
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 9)/9, {n, 4, 30}]
    Prime[Range[4,12]]!/9+1 (* Harvey P. Dale, Aug 22 2020 *)
Showing 1-10 of 57 results. Next