cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A087981 E.g.f.: exp(-2*x) / (1-x)^2.

Original entry on oeis.org

1, 0, 2, 4, 24, 128, 880, 6816, 60032, 589312, 6384384, 75630080, 972387328, 13483769856, 200571078656, 3185540657152, 53800242216960, 962741176500224, 18195808235880448, 362183230599856128, 7572922094360723456, 165945771111208714240, 3802923921298533384192, 90965940197460917878784, 2267151124921333646884864
Offset: 0

Views

Author

Gordon F. Royle, Oct 28 2003

Keywords

Comments

Permanent of an (n+1) X (n+1) (+1, -1)-matrix with exactly n -1's on the diagonal and 1's everywhere else.
It is conjectured by Kräuter and Seifter that for n >= 5 a(n-1) is the maximal possible value for the permanent of a nonsingular n X n (+1, -1)-matrix. I do not know for which values of n this has been confirmed - compare A087982. - N. J. A. Sloane
The Kräuter conjecture on permanents is true (see Budrevich and Guterman). - Sergei Shteiner, Jan 17 2020
The maximal possible value for the permanent of a singular n X n (+1, -1)-matrix is obviously n!.
Degree of the "hyperdeterminant" of a multilinear polynomial on (\P^1(\C))^n, or equivalently of an element of (\C^2)^{⊗ n}: see Gelfand, Kapranov and Zelevinsky. - Eric Rains, Mar 15 2004
(-1)^n * a(n) = Polynomials in A010027 evaluated at -1. - Ralf Stephan, Dec 15 2004
a(n) is the number of n X n (-1, 0, 1)-matrices containing in every row and every column exactly one -1 and one 1 such that the main diagonal does not contain 0's. - Vladimir Shevelev, Apr 01 2010
a(n) is the number of colored permutations with no fixed points of n elements where each cycle is one of two colors. - Michael Somos, Jan 19 2011
Binomial transform is A000255. Hankel transform is A059332. - Paul Barry, Apr 11 2011
Exponential self-convolution of subfactorials (A000166). - Vladimir Reshetnikov, Oct 07 2016

Examples

			G.f. = 1 + 2*x^2 + 4*x^3 + 24*x^4 + 128*x^5 + 880*x^6 + 6816*x^7 + ...
Since a(1) = 0, then, for n = 2, we have a(2) = -(-2)^3/4 = 2; further, for n = 3, we find a(3) = (3*6/5)*2 - (-2)^4/5 = 36/5 - 16/5 = 4. - _Vladimir Shevelev_, Apr 01 2010
a(4) = 24 because there are 6 derangements with one 4-cycle with 2^1 ways to color each derangement and 3 derangements with two 2-cycles with 2^2 ways to color each derangement. - _Michael Somos_, Jan 19 2011
		

References

  • I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhauser, 1994; see Corollary 2.10 in Chapter 14 (p. 457).

Crossrefs

Programs

  • Maple
    seq(simplify(KummerU(-n, -n-1, -2)), n = 0..24); # Peter Luschny, May 10 2022
  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[-2 x]/(1 - x)^2, {x, 0, 20}], x]
    Table[(-2)^n HypergeometricPFQ[{2, -n}, {}, 1/2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -2 * x + x * O(x^n) ) / ( 1 - x )^2, n ) )} /* Michael Somos, Jan 19 2011 */

Formula

Krauter and Seifter prove that the permanent of an n X n {-1, 1} matrix is divisible by 2^{n - [log_2(n)] - 1}.
Let c(n) be the permanent of the {-1, +1}-matrix of order n X n with n diagonal -1's only. Let a(n) be the permanent of the {-1, +1}-matrix of order (n+1) X (n+1) with n diagonal -1's only. Then by expanding along the first row (like determinant, but with no sign) we get c(n+1) = -c(n) + n a(n-1), a(n) = c(n) + n a(n-1), with c(2) = 2, a(2) = 2. {c(n)} has e.g.f. exp(-2x)/(1-x), see A000023. Also a(n) = c(n+1) + 2*c(n).
The following 4 formulas hold: a(n) = Sum_{k = 0..n} C(n, k)*D_k*D_{n-k}, where D_n = A000166(n); a(n) = n!*Sum_{j = 0..n} (n+1-j)*(-2)^j/j!; a(0) = 1, a(1) = 0 and, for n > 0, a(n+1) = n*(a(n) + 2*a(n-1)); a(0) = 1 and, for n > 0, a(n) = (n*(n+3)/(n+2))*a(n-1) - (-2)^(n+1)/(n+2). - Vladimir Shevelev, Apr 01 2010 [edited by Michael Somos, Jan 19 2011]
G.f.: 1/(1-2x^2/(1-2x-6x^2/(1-4x-12x^2/(1-6x-20x^2/(1-.../(1-2n*x-(n+1)(n+2)x^2/(1-... (continued fraction). - Paul Barry, Apr 11 2011
E.g.f.: 1/U(0) where U(k)= 1 - 2*x/( 1 + x/(2 - x - 4/( 2 + x*(k+1)/U(k+1)))) ; (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Oct 28 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: 1/Q(0) where Q(k) = 1 - 2*k*x - x^2*(k + 1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 10 2013
G.f.: S(x)/x - 1/x = G(0)/x - 1/x, where S(x) = sum(k >= 0, k!*(x/(1+2*x))^k ), G(k) = 1 + (2*k + 1)*x/( 1+2*x - 2*x*(1+2*x)*(k+1)/(2*x*(k+1) + (1+2*x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) = (-2)^n*hypergeom([2, -n], [], 1/2) = 4*(-2)^n*(1 - 2*hypergeom([1, -n-3], [], 1/2))/(n^2+3*n+2) = (4*(-2)^n + Gamma(n+4, -2)*exp(-2))/(n^2+3*n+2). - Vladimir Reshetnikov, Oct 07 2016
a(n) ~ sqrt(2*Pi) * n^(n+3/2) / exp(n+2). - Vaclav Kotesovec, Oct 08 2016
a(n) = KummerU(-n, -n - 1, -2). - Peter Luschny, May 10 2022

Extensions

More terms from Jaap Spies, Oct 28 2003
Further terms from Gordon F. Royle, Oct 29 2003
Definition via e.g.f. from Eric Rains, Mar 15 2004
Changed the offset and terms to correspond to e.g.f, Michael Somos, Jan 19 2011

A024000 a(n) = 1 - n.

Original entry on oeis.org

1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55, -56
Offset: 0

Views

Author

Keywords

Comments

a(n) is the weighted sum over all derangements (permutations with no fixed points) of n elements where each permutation with an odd number of cycles has weight +1 and each with an even number of cycles has weight -1. [Michael Somos, Jan 19 2011]

Examples

			a(4) = -3 because there are 6 derangements with one 4-cycle with weight -1 and 3 derangements with two 2-cycles with weight +1. - _Michael Somos_, Jan 19 2011
		

Crossrefs

A022958 shifted left.

Programs

  • Magma
    [1-n: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
  • Maple
    A024000:=n->1-n: seq(A024000(n), n=0..100); # Wesley Ivan Hurt, Mar 02 2016
  • Mathematica
    CoefficientList[Series[(1 - 2 x)/(1 - x)^2, {x, 0, 60}], x] Range[0, 60]!
    CoefficientList[Series[Exp[x] (1 - x), {x, 0, 60}], x]
    1-Range[0,60] (* Harvey P. Dale, Sep 18 2013 *)
    Flatten[NestList[(#/.x_/;x>1->Sequence[x,2x])-1&,{1},60]]
    (* Robert G. Wilson v, Mar 02 2016 *)
  • PARI
    {a(n) = 1 - n} /* Michael Somos, Jan 19 2011 */
    

Formula

E.g.f.: (1-x)*exp(x).
a(n) = Sum_{k=0..n} A094816(n,k)*(-1)^k (alternating row sums of Poisson-Charlier coefficient matrix).
O.g.f.: (1-2*x)/(1-x)^2. a(n+1) = A001489(n). - R. J. Mathar, May 28 2008
a(n) = 2*a(n-1)-a(n-2) for n>1. - Wesley Ivan Hurt, Mar 02 2016

A052124 Expansion of e.g.f. exp(-2*x)/(1-x)^3.

Original entry on oeis.org

1, 1, 4, 16, 88, 568, 4288, 36832, 354688, 3781504, 44199424, 561823744, 7714272256, 113769309184, 1793341407232, 30085661765632, 535170830467072, 10060645294440448, 199287423535808512, 4148644277780217856, 90545807649965080576, 2067407731760475406336, 49285894020028992323584
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64(b).

Crossrefs

Programs

  • Maple
    A052124 := proc(n) option remember; if n <=1 then 1 else n*A052124(n-1)+2*(n-1)*A052124(n-2); fi; end; # Detlef Pauly
  • Mathematica
    Table[(n+5)*(n+2)*n!*Sum[(-1)^k*2^(k+2)*(k+3)/(k+5)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 28 2012 *)
    With[{nn=20},CoefficientList[Series[Exp[(-2x)]/(1-x)^3,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 23 2017 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace( exp(-2*x)/(1-x)^3)) \\ Michel Marcus, Oct 25 2021
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A052124(n): return int((n+5)*(n+2)*factorial(n)*sum(Fraction((-1 if k&1 else 1)*(k+3)<Chai Wah Wu, Apr 20 2023

Formula

a(n) = n*a(n-1) + 2*(n-1)*a(n-2). - Detlef Pauly (dettodet(AT)yahoo.de), Sep 22 2003
a(n) = (n+5)*(n+2)*n! * Sum_{k=0..n} (-1)^k*2^(k+2)*(k+3)/(k+5)!. - Vaclav Kotesovec, Oct 28 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x*(k+3)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) ~ n!*(n+5)*(n+2)/(2*exp(2)). - Vaclav Kotesovec, Jun 15 2013
From Peter Bala, Sep 20 2013: (Start)
a(n) ~ (1/2)*n^2*n!/e^2 for large n.
Letting n -> infinity in the above series for a(n) given by Kotesovec gives the series expansion 1/e^2 = Sum_{k >= 0} (-1)^k*(k+3)*2^(k+3)/(k+5)!.
The sequence b(n) := (1/2)*n!*(n+2)*(n+5) satisfies the recurrence for a(n) given above by Pauly but with the starting values b(0) = 5 and b(1) = 9. This leads to the finite continued fraction expansion a(n) = (1/2)*n!*(n+2)*(n+5)( 1/(5 + 4/(1 + 2/(2 + 4/(3 + ... + 2*(n-1)/n)))) ), valid for n >= 2. Letting n -> infinity in the previous result gives the infinite continued fraction expansion 1/e^2 = 1/(5 + 4/(1 + 2/(2 + 4/(3 + ... + 2*(n-1)/(n + ...))))). Cf. A082031. (End)
a(n) = A087981(n+2)/(2*(n+1)). - Seiichi Manyama, Apr 25 2025

A295181 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x)^k.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 3, 4, 9, 0, 1, 0, 4, 6, 24, 44, 0, 1, 0, 5, 8, 45, 128, 265, 0, 1, 0, 6, 10, 72, 252, 880, 1854, 0, 1, 0, 7, 12, 105, 416, 1935, 6816, 14833, 0, 1, 0, 8, 14, 144, 620, 3520, 16146, 60032, 133496, 0, 1, 0, 9, 16, 189, 864, 5725, 31104, 153657, 589312, 1334961, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

A(n,k) is the k-fold exponential convolution of A000166 with themselves, evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x^2/2! + 2*k*x^3/3! + 3*k*(k + 2)*x^4/4! + 4*k*(5*k + 6)*x^5/5! + 5*k*(3*k^2 + 26*k + 24)*x^6/6! + ...
Square array begins:
  1,   1,    1,    1,    1,    1,  ...
  0,   0,    0,    0,    0,    0,  ...
  0,   1,    2,    3,    4,    5,  ...
  0,   2,    4,    6,    8,   10,  ...
  0,   9,   24,   45,   72,  105,  ...
  0,  44,  128,  252,  416,  620,  ...
		

Crossrefs

Columns k=0..5 give A000007, A000166, A087981, A137775, A383344, A383384.
Rows n=0..3 give A000012, A000004, A001477, A005843.
Main diagonal gives A295182.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x)^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    a(n, k) = n!*sum(j=0, n, (-k)^(n-j)*binomial(j+k-1, j)/(n-j)!); \\ Seiichi Manyama, Apr 25 2025

Formula

E.g.f. of column k: exp(-k*x)/(1 - x)^k.
From Seiichi Manyama, Apr 25 2025: (Start)
A(n,k) = n! * Sum_{j=0..n} (-k)^(n-j) * binomial(j+k-1,j)/(n-j)!.
A(0,k) = 1, A(1,k) = 0; A(n,k) = (n-1) * (A(n-1,k) + k*A(n-2,k)). (End)

A295182 a(n) = n! * [x^n] exp(-n*x)/(1 - x)^n.

Original entry on oeis.org

1, 0, 2, 6, 72, 620, 8640, 122346, 2156672, 41367672, 905126400, 21646532270, 570077595648, 16268377195044, 502096929431552, 16629319748711250, 588938142209310720, 22196966267762213744, 887352465220427317248, 37496112562144553167062, 1670071417348195942400000, 78195398849926292810318940
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

The n-th term of the n-fold exponential convolution of A000166 with themselves.

Crossrefs

Programs

  • Maple
    S:= series((exp(-x)/(1-x))^n,x,30):
    seq(n!*coeff(S,x,n),n=0..29); # Robert Israel, Nov 16 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[-n x]/(1 - x)^n, {x, 0, n}], {n, 0, 21}]

Formula

a(n) = A295181(n,n).
a(n) ~ phi^(3*n - 1/2) * n^n / (5^(1/4) * exp(n*(1 + 1/phi))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 16 2017
a(n) = n! * Sum_{k=0..n} (-n)^(n-k) * binomial(n+k-1,k)/(n-k)!. - Seiichi Manyama, Apr 25 2025

A383344 Expansion of e.g.f. exp(-4*x) / (1-x)^4.

Original entry on oeis.org

1, 0, 4, 8, 72, 416, 3520, 31104, 316288, 3525632, 43117056, 572195840, 8191304704, 125761056768, 2060841582592, 35894401335296, 662066514984960, 12890305925218304, 264155723747688448, 5682905054074109952, 128051031032232411136, 3015653024970577018880
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2025

Keywords

Crossrefs

Column k=4 of A295181.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-4*x)/(1-x)^4))

Formula

a(n) = n! * Sum_{k=0..n} (-4)^(n-k) * binomial(k+3,3)/(n-k)!.
a(n) = (n-1) * (a(n-1) + 4*a(n-2)) for n > 1.
E.g.f.: B(x)^4, where B(x) is the e.g.f. of A000166.
a(n) ~ sqrt(2*Pi) * n^(n + 7/2) / (6*exp(n+4)). - Vaclav Kotesovec, Apr 25 2025

A383382 Expansion of e.g.f. exp(-3*x) / (1-x)^5.

Original entry on oeis.org

1, 2, 9, 48, 321, 2502, 22329, 223668, 2481921, 30187242, 399071529, 5694475608, 87197543361, 1425766728942, 24787205125209, 456477484618908, 8875541469155841, 181670665706512722, 3904395263350689609, 87898121215165479168, 2068411075529464370241, 50778930934558144895382
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-3*x)/(1-x)^5))

Formula

a(n) = n! * Sum_{k=0..n} (-3)^(n-k) * binomial(k+4,4)/(n-k)!.
a(0) = 1, a(1) = 2; a(n) = (n+1)*a(n-1) + 3*(n-1)*a(n-2).
a(n) ~ sqrt(2*Pi) * n^(n + 9/2) / (24*exp(n+3)). - Vaclav Kotesovec, Apr 25 2025

A383378 Expansion of e.g.f. exp(-3*x) / (1-x)^4.

Original entry on oeis.org

1, 1, 5, 21, 129, 897, 7317, 67365, 692577, 7849953, 97199109, 1304688789, 18863836065, 292198665249, 4826470920021, 84669407740773, 1571901715253313, 30786460730863425, 634323280633460613, 13714611211502376597, 310448651226154786881, 7342298348439393120321
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Column k=3 of A383341.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-3*x)/(1-x)^4))

Formula

a(n) = n! * Sum_{k=0..n} (-3)^(n-k) * binomial(k+3,3)/(n-k)!.
a(0) = a(1) = 1; a(n) = n*a(n-1) + 3*(n-1)*a(n-2).
a(n) = A137775(n+2)/(3*(n+1)).
a(n) ~ sqrt(2*Pi) * n^(n + 7/2) / (6*exp(n+3)). - Vaclav Kotesovec, Apr 25 2025
Showing 1-8 of 8 results.