cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A015223 Odd pentagonal pyramidal numbers.

Original entry on oeis.org

1, 75, 405, 1183, 2601, 4851, 8125, 12615, 18513, 26011, 35301, 46575, 60025, 75843, 94221, 115351, 139425, 166635, 197173, 231231, 269001, 310675, 356445, 406503, 461041, 520251, 584325, 653455, 727833, 807651, 893101, 984375
Offset: 0

Views

Author

Keywords

Comments

Also first bisection of A139757. - Bruno Berselli, Feb 13 2012

Crossrefs

Programs

Formula

G.f.: (1 + 71*x + 111*x^2 + 9*x^3)/(1-x)^4. - Colin Barker, Feb 13 2012
a(n) = (2n+1)*(4n+1)^2 = A130656(4n+1). - Bruno Berselli, Feb 13 2012
From Ant King, Oct 23 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 192.
Sum_{n>=0} 1/a(n) = (8*C - 2*Pi + Pi^2 - 4*log(2))/8, where C is Catalan's constant (A006752). (End)
E.g.f.: (1 + 74*x + 128*x^2 + 32*x^3)*exp(x). - G. C. Greubel, Nov 04 2017

Extensions

More terms from Erich Friedman

A144849 Coefficients in the expansion of the squared sine lemniscate function.

Original entry on oeis.org

1, 6, 336, 77616, 50916096, 76307083776, 226653840838656, 1207012936807028736, 10696277678308486742016, 148900090457044541209706496, 3110043187741674836967136690176, 93885206124269301790338015801901056, 3970859549814416912519992571903015387136
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2009

Keywords

Comments

Denoted by \beta_n in Lomont and Brillhart (2011) on page xiii.
Gives the number of Increasing bilabeled strict binary trees with 4n+2 labels. - Markus Kuba, Nov 18 2014

Examples

			G.f. = 1 + 6*x + 336*x^2 + 77616*x^3 + 50916096*x^4 + ...
		

References

  • J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 86.

Crossrefs

Programs

  • Maple
    a[0]:=1; b[0]:=1;
    for n from 1 to 15 do b[n]:=add(binomial(4*n,4*j+2)*b[j]*b[n-1-j],j=0..n-1);
    a[n]:=(1/3)*add(binomial(4*n-1,4*j+1)*a[j]*b[n-1-j],j=0..n-1); od:
    tb:=[seq(b[n],n=0..15)];
  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ JacobiSD[ x, 1/2]^2, {x, 0, m}] / (2 (-3)^n)]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]]^2 / 2, {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ Binomial[ 4 n, 4 j + 2] a[j] a[ n - 1 - j], {j, 0, n - 1}]]; (* Michael Somos, Apr 25 2011 *)
    a[ n_] := If[n < 0, 0, With[{m = 4*n + 2}, m!*SeriesCoefficient[JacobiSN[x, -1]^2, {x, 0, m}]/(2*(-12)^n)]]; (* Michael Somos, Jul 10 2024 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 4*n + 2; m! * polcoeff( (serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))))^2 / 2, m))}; /* Michael Somos, Apr 25 2011 */

Formula

E.g.f.: sl(x)^2 = 2 Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 2) / (4*k + 2)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
a(0) = 1, a(n + 1) = Sum_{j=0..n} binomial( 4*n + 4, 4*j + 2) * a(j) * a(n - j).
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b(n) = A139757(n) * n/3. - Michael Somos, Jan 03 2013
E.g.f.: Increasing bilabeled strict binary trees of 2n+2 labels (including the zeros): T(z)=Sum_{n>=1}T_n z^{2n}/(2n)! = 6/sqrt(3)*WeierstrassP(3^{-1/4}z+LemniscateConstant; g_2,g_3), with g_2=-1 and g_3=0; alternatively, T(z)=sqrt(3)*i*sl^2(z/(3^{1/4}(1+i))). - Markus Kuba, Nov 18 2014

A329530 a(n) = n * (7*binomial(n, 2) + 1).

Original entry on oeis.org

0, 1, 16, 66, 172, 355, 636, 1036, 1576, 2277, 3160, 4246, 5556, 7111, 8932, 11040, 13456, 16201, 19296, 22762, 26620, 30891, 35596, 40756, 46392, 52525, 59176, 66366, 74116, 82447, 91380, 100936, 111136, 122001, 133552, 145810, 158796, 172531, 187036, 202332, 218440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

Centered heptagonal prism numbers.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 144.

Crossrefs

Centered m-gonal prism numbers: A100175 (m = 3), A059722 (m = 4), A006564 (m = 5), A005915 (m = 6), this sequence (m = 7), A139757 (m = 8), A006566 (m = 9).

Programs

  • Mathematica
    Table[n (7 Binomial[n, 2] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 + 12 x + 8 x^2)/(1 - x)^4, {x, 0, nmax}], x]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 16, 66}, 41]

Formula

G.f.: x * (1 + 12*x + 8*x^2) / (1 - x)^4.
E.g.f.: exp(x) * x * (2 + 14*x + 7*x^2) / 2.
a(n) = n * (7*n^2 - 7*n + 2) / 2.
a(n) = n * (7*A000217(n-1) + 1).
a(n) = n * A069099(n).

A372184 a(n) = 2^(1-3*n)*((2*n)!)^2/n.

Original entry on oeis.org

1, 9, 675, 198450, 160744500, 291751267500, 1035425248357500, 6523179064652250000, 67867154988642009000000, 1102501932790489436205000000, 26741184379833321275152275000000, 933641711437500579000666529350000000, 45515033432578153226282493305812500000000
Offset: 1

Views

Author

Thomas Scheuerle, Apr 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2^(1-3*n)*(2*n)!^2/n

Formula

a(n) = Product_{k=1..n-1} A339483(k).
a(n) = A139757(n-1)*8^(1-n)*A134372(n-1).
a(n) = (2^n*n*2*Zeta_k(1-2*n)*Pi^(4*n))/(D_k^(2*n-1)*sqrt(D_k)*Zeta_k(2*n)) where Zeta_k() is the Dedekind zeta function over a real quadratic field with fundamental discriminant D_k = A003658(m) for some m > 1.
a(n) = 8^(1-n)*Integral_{x>=0} ( x^(2*n-(1/2))*BesselK(1, 2*sqrt(x)) ), where BesselK(m, ...) is the modified Bessel function K_m(...) of the first kind.
Sum_{n>=1} (x^(n-1)/a(n)) = (BesselI(1, 2*2^(3/4)*x^(1/4)) - BesselJ(1, 2*2^(3/4)*x^(1/4)))/(4*2^(1/4)*x^(3/4))
= (d/dx)((-2 + BesselI(0, 2*2^(3/4)*x^(1/4)) + BesselJ(0, 2*2^(3/4)*x^(1/4)))/4), where BesselI(m, ...) is the modified Bessel function I_m(...) of the first kind and BesselJ(m, ...) is the Bessel function J_m(...) of the first kind.
a(n) ~ Pi*2^(n+3)*exp(-4*n)*n^(4*n). - Stefano Spezia, Apr 22 2024
D-finite with recurrence 2*a(n) -n*(n-1)*(-1+2*n)^2*a(n-1)=0. - R. J. Mathar, May 20 2024
Showing 1-4 of 4 results.