cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A144647 Second differences of A001515 (or A144301).

Original entry on oeis.org

1, 4, 25, 199, 1936, 22411, 301939, 4649800, 80654599, 1556992441, 33120019516, 769887934729, 19419368959225, 528311452144204, 15421347559288441, 480784227676809991, 15945180393017896024, 560549114426134288675
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2009

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else ( ((2*n-3)*(4*n^2-12*n+13))*Self(n-1) + (4*n^2-8*n+7)*Self(n-2) )/(4*n^2-16*n+19): n in [1..30]]; // G. C. Greubel, Sep 28 2023
    
  • Maple
    A001515 := proc(n) simplify(hypergeom([n+1,-n],[],-1/2)) ; end: A144647 := proc(n) if n =0 then A001515(n) ; else A001515(n+1)-2*A001515(n)+A001515(n-1) ; fi; end: seq(A144647(n),n=0..30) ; # R. J. Mathar, Feb 01 2009
  • Mathematica
    Join[{1},Differences[RecurrenceTable[{a[0]==1,a[1]==2,a[n]== (2n-1)a[n-1]+ a[n-2]},a[n],{n,25}],2]] (* Harvey P. Dale, Jun 18 2011 *)
  • SageMath
    def A144647_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (-1+4*x+2*(1-x)*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(sqrt(1-2*x))^3 ).egf_to_ogf().list()
    A144647_list(40) # G. C. Greubel, Sep 28 2023

Formula

G.f.: (1-x)^2/(x*Q(0)) + 1 - 1/x, where Q(k)= 1 - x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: T(0)*(1-x)/x + 1 - 1/x, where T(k) = 1 - x*(k+1)/( x*(k+1) - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2013
From G. C. Greubel, Sep 28 2023: (Start)
a(n) = A001515(n+1) - 2*A001515(n) + A001515(n).
a(n) = 2*A001515(n+1) - (2*n+3)*A001515(n).
a(n) = ( ((2*n-1)*(4*n^2 - 4*n + 5))*a(n-1) + (4*n^2 + 3)*a(n-2) )/(4*n^2 - 8*n + 7), with a(0) = 1, a(1) = 4.
E.g.f.: (-1 + 4*x + 2*(1-x)*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(sqrt(1-2*x))^3. (End)

Extensions

More terms from R. J. Mathar, Feb 01 2009

A001515 Bessel polynomial y_n(x) evaluated at x=1.

Original entry on oeis.org

1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0

Views

Author

Keywords

Comments

For some applications it is better to start this sequence with an extra 1 at the beginning: 1, 1, 2, 37, 266, 2431, 27007, 353522, 5329837, ... (again with offset 0). This sequence now has its own entry - see A144301.
Number of partitions of {1,...,k}, n <= k <= 2n, into n blocks with no more than 2 elements per block. Restated, number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n sets, each having 1 or 2 elements. - Bob Proctor, Apr 18 2005, Jun 26 2006. E.g., for n=2 we get: (k=2): {1,2}; (k=3): {1,23}, {2,13}, {3,12}; (k=4): {12,34}, {13,24}, {14,23}, for a total of a(2) = 7 partitions.
Equivalently, number of sequences of n unlabeled items such that each item occurs just once or twice (cf. A105749). - David Applegate, Dec 08 2008
Numerator of (n+1)-th convergent to 1+tanh(1). - Benoit Cloitre, Dec 20 2002
The following Maple lines show how this sequence and A144505, A144498, A001514, A144513, A144506, A144514, A144507, A144301 are related.
f0:=proc(n) local k; add((n+k)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f0(n),n=0..10)];
# that is this sequence
f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..10)];
# that is A144498
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..10)];
# that is A144513; divided by 2 gives A001514
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..10)];
# that is A144514; divided by 6 gives A144506
f4:=proc(n) local k; add((n+k+4)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f4(n),n=0..10)];
# that divided by 24 gives A144507
a(n) is also the numerator of the continued fraction sequence beginning with 2 followed by 3 and the remaining odd numbers: [2,3,5,7,9,11,13,...]. - Gil Broussard, Oct 07 2009
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most once. - N. J. A. Sloane, Jan 25 2017

Examples

			The first few Bessel polynomials are (cf. A001497, A001498):
  y_0 = 1
  y_1 = 1 +   x
  y_2 = 1 + 3*x +  3*x^2
  y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A144301 for other formulas and comments.
Row sums of Bessel triangle A001497 as well as of A001498.
Partial sums: A105748.
First differences: A144498.
Replace "sets" with "lists" in comment: A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.

Programs

  • Haskell
    a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    [(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
    
  • Maple
    A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
    A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
    A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
    Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
    
  • SageMath
    [sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

The following formulas can all be found in (or are easily derived from formulas in) Grosswald's book.
D-finite with recurrence: a(0) = 1, a(1) = 2; thereafter a(n) = (2*n-1)*a(n-1) + a(n-2).
E.g.f.: exp(1-sqrt(1-2*x))/sqrt(1-2*x).
a(n) = Sum_{ k = 0..n } binomial(n+k,2*k)*(2*k)!/(k!*2^k).
Equivalently, a(n) = Sum_{ k = 0..n } (n+k)!/((n-k)!*k!*2^k) = Sum_{ k = n..2n } k!/((2n-k)!*(k-n)!*2^(k-n)).
a(n) = Hypergeometric2F0( [n+1, -n] ; - ; -1/2).
a(n) = A105749(n)/n!.
a(n) ~ exp(1)*(2n)!/(n!*2^n) as n -> oo. [See Grosswald, p. 124]
a(n) = A144301(n+1).
G.f.: 1/(1-x-x/(1-x-2*x/(1-x-3*x/(1-x-4*x/(1-x-5*x/(1-.... (continued fraction). - Paul Barry, Feb 08 2009
From Michael Somos, Apr 08 2012: (Start)
a(-1 - n) = a(n).
(a(n+1) + a(n+2))^2 = a(n)*a(n+2) + a(n+1)*a(n+3) for all integer n. (End)
G.f.: 1/G(0) where G(k) = 1 - x - x*(2*k+1)/(1 - x - 2*x*(k+1)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2012
E.g.f.: E(0)/(2*sqrt(1-2*x)), where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)*(1+sqrt(1-2*x))/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
G.f.: T(0)/(1-x), where T(k) = 1 - (k+1)*x/((k+1)*x - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
a(n) = (2*BesselI(1/2, 1)+BesselI(3/2, 1))*BesselK(n+1/2, 1). - Jean-François Alcover, Feb 03 2014
a(n) = exp(1)*sqrt(2/Pi)*BesselK(1/2+n,1). - Gerry Martens, Jul 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n) = (1/n!)*Integral_{x = 0..inf} exp(-x)*x^n*(1 + x/2)^n dx.
E.g.f.: d/dx( exp(x*c(x/2)) ) = 1 + 2*x + 7*x^2/2! + 37*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 2^n * hypergeometric1f1(-n; -2*n; 2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 2*t/(1-t)^2). (End)

Extensions

Extensively edited by N. J. A. Sloane, Dec 07 2008

A144498 Column 2 of array in A144502.

Original entry on oeis.org

1, 5, 30, 229, 2165, 24576, 326515, 4976315, 85630914, 1642623355, 34762642871, 804650577600, 20224019536825, 548535471681029, 15969883030969470, 496754110707779461, 16441934503725675485, 576991048929859964160, 21399021201104749243099, 836326710446071005267035
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Crossrefs

First differences of A001515 and A144301.

Programs

  • Magma
    A144498:= func< n | (&+[Binomial(n,k)*Factorial(n+k+1)/(2^k*Factorial(n)): k in [0..n]]) >;
    [A144498(n): n in [0..30]]; // G. C. Greubel, Oct 07 2023
    
  • Maple
    f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..60)];
  • Mathematica
    Table[Sum[(n+k+1)!/((n-k)!*k!*2^k), {k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2013 *)
  • SageMath
    def A144498(n): return sum(binomial(n,k)*rising_factorial(n+1,k+1)//2^k for k in range(n+1))
    [A144498(n) for n in range(31)] # G. C. Greubel, Oct 07 2023

Formula

a(n) = A001515(n+1) - A001515(n).
a(n) = A144301(n+2) - A144301(n+1).
E.g.f.: (1 - 2*x + 2*x*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(1-2*x)^2. - Sergei N. Gladkovskii, Oct 06 2012
G.f.: (1-x)/(x*Q(0)) - 1/x, where Q(k)= 1 - x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
a(n) ~ 2^(n+3/2) * n^(n+1) / exp(n-1). - Vaclav Kotesovec, Oct 08 2013
G.f.: T(0)/x- 1/x, where T(k) = 1 - (k+1)*x/((k+1)*x - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
(2*n-1)*a(n) = (4*n^2 + 1)*a(n-1) + (2*n+1)*a(n-2). - G. C. Greubel, Oct 07 2023

A144502 Square array read by antidiagonals upwards: T(n,k) is the number of scenarios for the gift exchange problem in which each gift can be stolen at most once, when there are n gifts in the pool and k gifts (not yet frozen) in peoples' hands.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 7, 7, 5, 1, 37, 37, 30, 16, 1, 266, 266, 229, 155, 65, 1, 2431, 2431, 2165, 1633, 946, 326, 1, 27007, 27007, 24576, 19714, 13219, 6687, 1957, 1, 353522, 353522, 326515, 272501, 198773, 119917, 53822, 13700, 1, 5329837, 5329837, 4976315, 4269271, 3289726, 2199722, 1205857, 486355, 109601, 1
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Examples

			The array, A(n,k), begins:
    1,    1,     1,      1,       1,        1, ...
    1,    2,     5,     16,      65,      326, ...
    2,    7,    30,    155,     946,     6687, ...
    7,   37,   229,   1633,   13219,   119917, ...
   37,  266,  2165,  19714,  198773,  2199722, ...
  266, 2431, 24576, 272501, 3289726, 42965211, ...
  ...
Antidiagonal triangle, T(n,k), begins as:
      1;
      1,     1;
      2,     2,     1;
      7,     7,     5,     1;
     37,    37,    30,    16,     1;
    266,   266,   229,   155,    65,    1;
   2431,  2431,  2165,  1633,   946,  326,    1;
  27007, 27007, 24576, 19714, 13219, 6687, 1957,   1;
		

Crossrefs

Rows include A000522, A144495, A144496, A144497.
Columns include A144301, A001515, A144498, A144499, A144500.
Main diagonal is A144501.
Antidiagonal sums give A144503.

Programs

  • Magma
    A144301:= func< n | (&+[ Binomial(n+k-1,2*k)*Factorial(2*k)/( Factorial(k)*2^k): k in [0..n]]) >;
    function A(n,k)
      if n eq 0 then return 1;
      elif k eq 0 then return A144301(n);
      elif k eq 1 then return A144301(n+1);
      else return A(n-1,k+1) + k*A(n,k-1);
      end if;
    end function;
    A144502:= func< n,k | A(n-k, k) >;
    [A144502(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
    
  • Maple
    B:=proc(p,r) option remember;
    if p=0 then RETURN(1); fi;
    if r=0 then RETURN(B(p-1,1)); fi;
    B(p-1,r+1)+r*B(p,r-1); end;
    seq(seq(B(d-k, k), k=0..d), d=0..9);
  • Mathematica
    t[0, ]= 1; t[n, 0]:= t[n, 0]= t[n-1, 1];
    t[n_, k_]:= t[n, k]= t[n-1, k+1] + k*t[n, k-1];
    Table[t[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
  • SageMath
    def A144301(n): return 1 if n<2 else (2*n-3)*A144301(n-1)+A144301(n-2)
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        elif k==0: return A144301(n)
        elif k==1: return A144301(n+1)
        else: return A(n-1,k+1) + k*A(n,k-1)
    def A144502(n,k): return A(n-k,k)
    flatten([[A144502(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023

Formula

Let A_n(x) be the e.g.f. for row n. Then A_0(x) = exp(x) and for n >= 1, A_n(x) = (d/dx)A_{n-1}(x)/(1-x).
For n >= 1, the rows A_{n}(x) = P_{n}(x)*exp(x)/(1-x)^(2*n), where P_{n}(x) = (1-x)*(d/dx)( P_{n-1}(x) ) + (2*n-x)*P_{n-1}(x) and P_{0}(x) = 1. - G. C. Greubel, Oct 08 2023

Extensions

6 more terms from Michel Marcus, Feb 01 2023

A144505 Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x).

Original entry on oeis.org

1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837
Offset: 0

Views

Author

N. J. A. Sloane, Dec 14 2008

Keywords

Examples

			The first few polynomials P[n] (n >= 0) are:
  P[0] = 1;
  P[1] = 1;
  P[2] = -x +2;
  P[3] =  x^2 -5*x +7;
  P[4] = -x^3 + 9*x^2 - 30*x +37;
  P[5] =  x^4 -14*x^3 + 81*x^2 - 229*x +266;
  P[6] = -x^5 +20*x^4 -175*x^3 + 835*x^2 -2165*x +2431;
  P[7] =  x^6 -27*x^5 +330*x^4 -2330*x^3 +9990*x^2 -24576*x +27007;
...
Triangle of coefficients begins:
   1;
   1;
  -1,   2;
   1,  -5,    7;
  -1,   9,  -30,     37;
   1, -14,   81,   -229,    266;
  -1,  20, -175,    835,  -2165,    2431;
   1, -27,  330,  -2330,   9990,  -24576,   27007;
  -1,  35, -567,   5495, -34300,  137466, -326515,   353522;
   1, -44,  910, -11522,  97405, -561386, 2148139, -4976315, 5329837;
...
		

Crossrefs

Columns give A001515 (really A144301), A144498, A001514, A144506, A144507.
Row sums give A001147.
Alternating row sums give A043301.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    f:= func< n,x | x^n*(&+[Binomial(n,j)*Factorial(n+j)*(1-1/x)^(n-j)/(2^j*Factorial(n)) : j in [0..n]]) >;
    T:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
    [1] cat [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 02 2023
    
  • Maple
    A[0]:=exp(x);
    P[0]:=1;
    for n from 1 to 12 do
    A[n]:=sort(simplify( diff(A[n-1],x)/(1-x)));
    P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x)));
    t1:=simplify(x^(degree(P[n],x))*subs(x=1/x,P[n]));
    t2:=series(t1,x,2*n+3);
    lprint(P[n]);
    lprint(seriestolist(t2));
    od:
  • Mathematica
    f[n_, x_]:= x^n*Sum[((n+j)!/((n-j)!*j!*2^j))*(1-1/x)^(n-j), {j,0,n}];
    t[n_, k_]:= Coefficient[Series[f[n,x], {x,0,30}], x, k];
    Join[{1}, Table[t[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Oct 02 2023 *)
  • SageMath
    P. = PowerSeriesRing(QQ, 50)
    def f(n,x): return x^n*sum(binomial(n,j)*rising_factorial(n+1,j)*(1-1/x)^(n-j)/2^j for j in range(n+1))
    def T(n,k): return P( f(n,x) ).list()[k]
    [1] + flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 02 2023

Formula

Let A[0](x) = exp(x), A[n](x) = A[n-1]'(x)/(1-x) for n>0 and let P[n](x) = A[n](x)*(1-x)^(2n-1)/exp(x). Row n of triangle gives coefficients of P[n](x) with exponents of x in decreasing order.
From Vladeta Jovovic, Dec 15 2008: (Start)
P[n] = Sum_{k=0..n} ((n+k)!/((n-k)!*k!*2^k)) * (1-x)^(n-k).
E.g.f.: exp((1-x)*(1-sqrt(1-2*y)))/sqrt(1-2*y). (End)

A122850 Exponential Riordan array (1, sqrt(1+2x)-1).

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -15, 15, -6, 1, 0, 105, -105, 45, -10, 1, 0, -945, 945, -420, 105, -15, 1, 0, 10395, -10395, 4725, -1260, 210, -21, 1, 0, -135135, 135135, -62370, 17325, -3150, 378, -28, 1, 0, 2027025, -2027025, 945945, -270270, 51975, -6930, 630, -36, 1
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Inverse of number triangle A122848. Entries are Bessel polynomial coefficients. Row sums are A000806.
Also the inverse Bell transform of the sequence "g(n) = 1 if n<2 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Also called Bessel numbers of first kind, and denoted b(n,k). - Abdelhay Benmoussa, Aug 30 2025

Examples

			Triangle begins
  1
  0 1
  0 -1 1
  0 3 -3 1
  0 -15 15 -6 1
  0 105 -105 45 -10 1
  0 -945 945 -420 105 -15 1
  0 10395 -10395 4725 -1260 210 -21 1
  0 -135135 135135 -62370 17325 -3150 378 -28 1
  0 2027025 -2027025 945945 -270270 51975 -6930 630 -36 1
  0 -34459425 34459425 -16216200 4729725 -945945 135135 -13860 990 -45 1
  ...
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (-1)^n*doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[Function[n, (-1)^n (2n-1)!!], rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 1 if n<2 else 0, 12).inverse() # Peter Luschny, Jan 19 2016

Formula

T(n,k) = (-1)^(n-k)*A132062(n,k). - Philippe Deléham, Nov 06 2011
Triangle equals the matrix product A039757*A008277. Dobinski-type formula for the row polynomials: R(n,x) = x*exp(-x)*Sum_{k = 0..inf} (k-1)*(k-3)*(k-5)*...*(k-(2*n-3))*x^k/k! for n >= 1. Cf. A001497. - Peter Bala, Jun 23 2014
From Peter Bala, Jan 09 2018: (Start)
Alternative Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-(2*n-2))*x^k/k!.
Equivalently, R(n,x) = x o (x-2) o (x-4) o...o (x-(2*n-2)), where o denotes the white diamond product of polynomials. See the Bala link for the definition and details.
The white diamond products (x-1) o (x-3) o...o (x-(2*n-3)) give the row polynomials of the array with a factor of x removed.
If d is the first derivative operator f -> d/dx(f(x)) and D is the operator f(x) -> 1/x*d/dx(f(x)) then x^(2*n)*D^n = R(n,x*d), with the understanding that (x*d)^k is to interpreted as the operator f(x) -> x^k*d^k(f(x))/dx^k. (End)
Sum_{k=0..n} (-1)^(n+k) * T(n,k) = A144301(n). - Alois P. Heinz, Aug 31 2022

Extensions

More terms from Alois P. Heinz, Aug 31 2022

A143990 a(n) = n!*A001515(n-1) with a(0) = 1.

Original entry on oeis.org

1, 1, 4, 42, 888, 31920, 1750320, 136115280, 14254007040, 1934091250560, 330078373228800, 69199130042380800, 17481751115946163200, 5237838647954514201600, 1836425205487182172262400, 744852154338379227748608000, 346052141662324885396697088000, 182572078442025253754006986752000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (n-1)*(2*n-5)*Self(n-1) + (n-1)*(n-2)*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 27 2023
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[1-Sqrt[1-2*x]], {x,0,m}], x]*(Range[0, m]!)^2] (* G. C. Greubel, Sep 27 2023 *)
  • SageMath
    m=30
    P. = PowerSeriesRing(QQ, m+2)
    def A143990(n): return (factorial(n))^2*P( exp(1-sqrt(1-2*x)) ).list()[n]
    [A143990(n) for n in range(m+1)] # G. C. Greubel, Sep 27 2023

Formula

a(n) = n*(2*n-3)*a(n-1) + n*(n-1)*a(n-2), a(0)=1, a(1)=1. - Sergei N. Gladkovskii, May 17 2013
From G. C. Greubel, Sep 27 2023: (Start)
a(n) = n * A105749(n-1) + [n=0].
a(n) = n! * A144301(n).
E.g.f.: 1 + sqrt(Pi*x/2) * exp(-(1-x)^2/(2*x)) * erfi((1-x)/sqrt(2*x)).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(1 - sqrt(1-2*x)). (End)

A305536 Expansion of 1/(1 - x/(1 - x - 1*x/(1 - x - 2*x/(1 - x - 3*x/(1 - x - 4*x/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 12, 62, 410, 3426, 35360, 438390, 6358306, 105544388, 1970997142, 40860191470, 930482058472, 23079257369054, 619157277351618, 17860295754328884, 551188620179519302, 18119420989759583998, 632069815329176122584, 23318435171385786420958, 907077442499274638005314
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2018

Keywords

Comments

Invert transform of A001515, shifted right one place.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
         `if`(n<2, n+1, (2*n-1)*b(n-1)+b(n-2))
        end:
    a:= proc(n) option remember;
         `if`(n=0, 1, add(b(j-1)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 11 2023
  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - x/(1 - x + ContinuedFractionK[-k x, 1 - x, {k, 1, nmax}])), {x, 0, nmax}], x]
    nmax = 21; CoefficientList[Series[1/(1 - Sum[HypergeometricPFQ[{k, 1 - k}, {}, -1/2] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[HypergeometricPFQ[{k, 1 - k}, {}, -1/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

a(n) ~ 2^(n - 1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Sep 18 2021

A369746 Expansion of e.g.f. exp( 3 * (1-sqrt(1-2*x)) ).

Original entry on oeis.org

1, 3, 12, 63, 423, 3528, 35559, 422901, 5817744, 91072269, 1600588269, 31230827532, 670252672593, 15696888917427, 398454496989012, 10899543418960167, 319672849622745951, 10007954229075765984, 333139545206104991031, 11749955670275356579941
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Programs

  • Maple
    # The row polynomials of A132062 evaluated at x = 3.
    T := proc(n, k) option remember; if k = 0 then 0^n elif n < k then 0
    else (2*(n - 1) - k)*T(n - 1, k) + T(n - 1, k - 1) fi end:
    seq(add(T(n, k)*3^k, k = 0..n), n = 0..19);  # Peter Luschny, Apr 25 2024
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[3(1-Sqrt[1-2x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 14 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(3*(1-sqrt(1-2*x)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} 3^(n-k) * (n-1+k)! / (2^k * k! * (n-1-k)!).
a(n) = (2*n-3)*a(n-1) + 9*a(n-2).
Showing 1-9 of 9 results.