Original entry on oeis.org
1, 4, 25, 199, 1936, 22411, 301939, 4649800, 80654599, 1556992441, 33120019516, 769887934729, 19419368959225, 528311452144204, 15421347559288441, 480784227676809991, 15945180393017896024, 560549114426134288675
Offset: 0
-
[n le 2 select 4^(n-1) else ( ((2*n-3)*(4*n^2-12*n+13))*Self(n-1) + (4*n^2-8*n+7)*Self(n-2) )/(4*n^2-16*n+19): n in [1..30]]; // G. C. Greubel, Sep 28 2023
-
A001515 := proc(n) simplify(hypergeom([n+1,-n],[],-1/2)) ; end: A144647 := proc(n) if n =0 then A001515(n) ; else A001515(n+1)-2*A001515(n)+A001515(n-1) ; fi; end: seq(A144647(n),n=0..30) ; # R. J. Mathar, Feb 01 2009
-
Join[{1},Differences[RecurrenceTable[{a[0]==1,a[1]==2,a[n]== (2n-1)a[n-1]+ a[n-2]},a[n],{n,25}],2]] (* Harvey P. Dale, Jun 18 2011 *)
-
def A144647_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( (-1+4*x+2*(1-x)*sqrt(1-2*x))*exp(1-sqrt(1-2*x))/(sqrt(1-2*x))^3 ).egf_to_ogf().list()
A144647_list(40) # G. C. Greubel, Sep 28 2023
A001515
Bessel polynomial y_n(x) evaluated at x=1.
Original entry on oeis.org
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0
The first few Bessel polynomials are (cf. A001497, A001498):
y_0 = 1
y_1 = 1 + x
y_2 = 1 + 3*x + 3*x^2
y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (first 101 terms from T. D. Noe)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- P. Blasiak, A. Horzela, K. A. Penson, G.H.E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 11.
- O. Frink and H. L. Krall, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
- E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
- Wojciech Mlotkowski and Anna Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- J. Riordan, Letter to N. J. A. Sloane, Jul. 1968
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
- N. J. A. Sloane, Letter to J. Riordan, Nov. 1970
- Index entries for sequences related to Bessel functions or polynomials
- Index entries for related partition-counting sequences
See
A144301 for other formulas and comments.
Replace "sets" with "lists" in comment:
A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
-
[(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
-
A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
-
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
{a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
-
[sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
Original entry on oeis.org
1, 5, 30, 229, 2165, 24576, 326515, 4976315, 85630914, 1642623355, 34762642871, 804650577600, 20224019536825, 548535471681029, 15969883030969470, 496754110707779461, 16441934503725675485, 576991048929859964160, 21399021201104749243099, 836326710446071005267035
Offset: 0
-
A144498:= func< n | (&+[Binomial(n,k)*Factorial(n+k+1)/(2^k*Factorial(n)): k in [0..n]]) >;
[A144498(n): n in [0..30]]; // G. C. Greubel, Oct 07 2023
-
f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..60)];
-
Table[Sum[(n+k+1)!/((n-k)!*k!*2^k), {k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2013 *)
-
def A144498(n): return sum(binomial(n,k)*rising_factorial(n+1,k+1)//2^k for k in range(n+1))
[A144498(n) for n in range(31)] # G. C. Greubel, Oct 07 2023
A144502
Square array read by antidiagonals upwards: T(n,k) is the number of scenarios for the gift exchange problem in which each gift can be stolen at most once, when there are n gifts in the pool and k gifts (not yet frozen) in peoples' hands.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 7, 7, 5, 1, 37, 37, 30, 16, 1, 266, 266, 229, 155, 65, 1, 2431, 2431, 2165, 1633, 946, 326, 1, 27007, 27007, 24576, 19714, 13219, 6687, 1957, 1, 353522, 353522, 326515, 272501, 198773, 119917, 53822, 13700, 1, 5329837, 5329837, 4976315, 4269271, 3289726, 2199722, 1205857, 486355, 109601, 1
Offset: 0
The array, A(n,k), begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 16, 65, 326, ...
2, 7, 30, 155, 946, 6687, ...
7, 37, 229, 1633, 13219, 119917, ...
37, 266, 2165, 19714, 198773, 2199722, ...
266, 2431, 24576, 272501, 3289726, 42965211, ...
...
Antidiagonal triangle, T(n,k), begins as:
1;
1, 1;
2, 2, 1;
7, 7, 5, 1;
37, 37, 30, 16, 1;
266, 266, 229, 155, 65, 1;
2431, 2431, 2165, 1633, 946, 326, 1;
27007, 27007, 24576, 19714, 13219, 6687, 1957, 1;
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
-
A144301:= func< n | (&+[ Binomial(n+k-1,2*k)*Factorial(2*k)/( Factorial(k)*2^k): k in [0..n]]) >;
function A(n,k)
if n eq 0 then return 1;
elif k eq 0 then return A144301(n);
elif k eq 1 then return A144301(n+1);
else return A(n-1,k+1) + k*A(n,k-1);
end if;
end function;
A144502:= func< n,k | A(n-k, k) >;
[A144502(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
-
B:=proc(p,r) option remember;
if p=0 then RETURN(1); fi;
if r=0 then RETURN(B(p-1,1)); fi;
B(p-1,r+1)+r*B(p,r-1); end;
seq(seq(B(d-k, k), k=0..d), d=0..9);
-
t[0, ]= 1; t[n, 0]:= t[n, 0]= t[n-1, 1];
t[n_, k_]:= t[n, k]= t[n-1, k+1] + k*t[n, k-1];
Table[t[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
-
def A144301(n): return 1 if n<2 else (2*n-3)*A144301(n-1)+A144301(n-2)
@CachedFunction
def A(n,k):
if n==0: return 1
elif k==0: return A144301(n)
elif k==1: return A144301(n+1)
else: return A(n-1,k+1) + k*A(n,k-1)
def A144502(n,k): return A(n-k,k)
flatten([[A144502(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023
A144505
Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x).
Original entry on oeis.org
1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837
Offset: 0
The first few polynomials P[n] (n >= 0) are:
P[0] = 1;
P[1] = 1;
P[2] = -x +2;
P[3] = x^2 -5*x +7;
P[4] = -x^3 + 9*x^2 - 30*x +37;
P[5] = x^4 -14*x^3 + 81*x^2 - 229*x +266;
P[6] = -x^5 +20*x^4 -175*x^3 + 835*x^2 -2165*x +2431;
P[7] = x^6 -27*x^5 +330*x^4 -2330*x^3 +9990*x^2 -24576*x +27007;
...
Triangle of coefficients begins:
1;
1;
-1, 2;
1, -5, 7;
-1, 9, -30, 37;
1, -14, 81, -229, 266;
-1, 20, -175, 835, -2165, 2431;
1, -27, 330, -2330, 9990, -24576, 27007;
-1, 35, -567, 5495, -34300, 137466, -326515, 353522;
1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837;
...
-
R:=PowerSeriesRing(Integers(), 50);
f:= func< n,x | x^n*(&+[Binomial(n,j)*Factorial(n+j)*(1-1/x)^(n-j)/(2^j*Factorial(n)) : j in [0..n]]) >;
T:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
[1] cat [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 02 2023
-
A[0]:=exp(x);
P[0]:=1;
for n from 1 to 12 do
A[n]:=sort(simplify( diff(A[n-1],x)/(1-x)));
P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x)));
t1:=simplify(x^(degree(P[n],x))*subs(x=1/x,P[n]));
t2:=series(t1,x,2*n+3);
lprint(P[n]);
lprint(seriestolist(t2));
od:
-
f[n_, x_]:= x^n*Sum[((n+j)!/((n-j)!*j!*2^j))*(1-1/x)^(n-j), {j,0,n}];
t[n_, k_]:= Coefficient[Series[f[n,x], {x,0,30}], x, k];
Join[{1}, Table[t[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Oct 02 2023 *)
-
P. = PowerSeriesRing(QQ, 50)
def f(n,x): return x^n*sum(binomial(n,j)*rising_factorial(n+1,j)*(1-1/x)^(n-j)/2^j for j in range(n+1))
def T(n,k): return P( f(n,x) ).list()[k]
[1] + flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 02 2023
A122850
Exponential Riordan array (1, sqrt(1+2x)-1).
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -15, 15, -6, 1, 0, 105, -105, 45, -10, 1, 0, -945, 945, -420, 105, -15, 1, 0, 10395, -10395, 4725, -1260, 210, -21, 1, 0, -135135, 135135, -62370, 17325, -3150, 378, -28, 1, 0, 2027025, -2027025, 945945, -270270, 51975, -6930, 630, -36, 1
Offset: 0
Triangle begins
1
0 1
0 -1 1
0 3 -3 1
0 -15 15 -6 1
0 105 -105 45 -10 1
0 -945 945 -420 105 -15 1
0 10395 -10395 4725 -1260 210 -21 1
0 -135135 135135 -62370 17325 -3150 378 -28 1
0 2027025 -2027025 945945 -270270 51975 -6930 630 -36 1
0 -34459425 34459425 -16216200 4729725 -945945 135135 -13860 990 -45 1
...
- Peter Bala, The white diamond product of power series
- Orli Herscovici, Study of the p,q-deformed Touchard polynomials, arXiv:1904.07674 [math.CO], 2019.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Wikipedia, Bessel polynomials
- S. Willerton, The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials, arXiv:1708.03227v1 [math.MG], 2017.
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-1)^n*doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[Function[n, (-1)^n (2n-1)!!], rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<2 else 0, 12).inverse() # Peter Luschny, Jan 19 2016
A143990
a(n) = n!*A001515(n-1) with a(0) = 1.
Original entry on oeis.org
1, 1, 4, 42, 888, 31920, 1750320, 136115280, 14254007040, 1934091250560, 330078373228800, 69199130042380800, 17481751115946163200, 5237838647954514201600, 1836425205487182172262400, 744852154338379227748608000, 346052141662324885396697088000, 182572078442025253754006986752000
Offset: 0
-
[n le 2 select 1 else (n-1)*(2*n-5)*Self(n-1) + (n-1)*(n-2)*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 27 2023
-
With[{m=30}, CoefficientList[Series[Exp[1-Sqrt[1-2*x]], {x,0,m}], x]*(Range[0, m]!)^2] (* G. C. Greubel, Sep 27 2023 *)
-
m=30
P. = PowerSeriesRing(QQ, m+2)
def A143990(n): return (factorial(n))^2*P( exp(1-sqrt(1-2*x)) ).list()[n]
[A143990(n) for n in range(m+1)] # G. C. Greubel, Sep 27 2023
A305536
Expansion of 1/(1 - x/(1 - x - 1*x/(1 - x - 2*x/(1 - x - 3*x/(1 - x - 4*x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, 1, 3, 12, 62, 410, 3426, 35360, 438390, 6358306, 105544388, 1970997142, 40860191470, 930482058472, 23079257369054, 619157277351618, 17860295754328884, 551188620179519302, 18119420989759583998, 632069815329176122584, 23318435171385786420958, 907077442499274638005314
Offset: 0
-
b:= proc(n) option remember;
`if`(n<2, n+1, (2*n-1)*b(n-1)+b(n-2))
end:
a:= proc(n) option remember;
`if`(n=0, 1, add(b(j-1)*a(n-j), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 11 2023
-
nmax = 21; CoefficientList[Series[1/(1 - x/(1 - x + ContinuedFractionK[-k x, 1 - x, {k, 1, nmax}])), {x, 0, nmax}], x]
nmax = 21; CoefficientList[Series[1/(1 - Sum[HypergeometricPFQ[{k, 1 - k}, {}, -1/2] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[HypergeometricPFQ[{k, 1 - k}, {}, -1/2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
A369746
Expansion of e.g.f. exp( 3 * (1-sqrt(1-2*x)) ).
Original entry on oeis.org
1, 3, 12, 63, 423, 3528, 35559, 422901, 5817744, 91072269, 1600588269, 31230827532, 670252672593, 15696888917427, 398454496989012, 10899543418960167, 319672849622745951, 10007954229075765984, 333139545206104991031, 11749955670275356579941
Offset: 0
-
# The row polynomials of A132062 evaluated at x = 3.
T := proc(n, k) option remember; if k = 0 then 0^n elif n < k then 0
else (2*(n - 1) - k)*T(n - 1, k) + T(n - 1, k - 1) fi end:
seq(add(T(n, k)*3^k, k = 0..n), n = 0..19); # Peter Luschny, Apr 25 2024
-
With[{nn=20},CoefficientList[Series[Exp[3(1-Sqrt[1-2x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 14 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(3*(1-sqrt(1-2*x)))))
Showing 1-9 of 9 results.
Comments