cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001515 Bessel polynomial y_n(x) evaluated at x=1.

Original entry on oeis.org

1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0

Views

Author

Keywords

Comments

For some applications it is better to start this sequence with an extra 1 at the beginning: 1, 1, 2, 37, 266, 2431, 27007, 353522, 5329837, ... (again with offset 0). This sequence now has its own entry - see A144301.
Number of partitions of {1,...,k}, n <= k <= 2n, into n blocks with no more than 2 elements per block. Restated, number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n sets, each having 1 or 2 elements. - Bob Proctor, Apr 18 2005, Jun 26 2006. E.g., for n=2 we get: (k=2): {1,2}; (k=3): {1,23}, {2,13}, {3,12}; (k=4): {12,34}, {13,24}, {14,23}, for a total of a(2) = 7 partitions.
Equivalently, number of sequences of n unlabeled items such that each item occurs just once or twice (cf. A105749). - David Applegate, Dec 08 2008
Numerator of (n+1)-th convergent to 1+tanh(1). - Benoit Cloitre, Dec 20 2002
The following Maple lines show how this sequence and A144505, A144498, A001514, A144513, A144506, A144514, A144507, A144301 are related.
f0:=proc(n) local k; add((n+k)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f0(n),n=0..10)];
# that is this sequence
f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..10)];
# that is A144498
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..10)];
# that is A144513; divided by 2 gives A001514
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..10)];
# that is A144514; divided by 6 gives A144506
f4:=proc(n) local k; add((n+k+4)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f4(n),n=0..10)];
# that divided by 24 gives A144507
a(n) is also the numerator of the continued fraction sequence beginning with 2 followed by 3 and the remaining odd numbers: [2,3,5,7,9,11,13,...]. - Gil Broussard, Oct 07 2009
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most once. - N. J. A. Sloane, Jan 25 2017

Examples

			The first few Bessel polynomials are (cf. A001497, A001498):
  y_0 = 1
  y_1 = 1 +   x
  y_2 = 1 + 3*x +  3*x^2
  y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A144301 for other formulas and comments.
Row sums of Bessel triangle A001497 as well as of A001498.
Partial sums: A105748.
First differences: A144498.
Replace "sets" with "lists" in comment: A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.

Programs

  • Haskell
    a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    [(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
    
  • Maple
    A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
    A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
    A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
    Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
    
  • SageMath
    [sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

The following formulas can all be found in (or are easily derived from formulas in) Grosswald's book.
D-finite with recurrence: a(0) = 1, a(1) = 2; thereafter a(n) = (2*n-1)*a(n-1) + a(n-2).
E.g.f.: exp(1-sqrt(1-2*x))/sqrt(1-2*x).
a(n) = Sum_{ k = 0..n } binomial(n+k,2*k)*(2*k)!/(k!*2^k).
Equivalently, a(n) = Sum_{ k = 0..n } (n+k)!/((n-k)!*k!*2^k) = Sum_{ k = n..2n } k!/((2n-k)!*(k-n)!*2^(k-n)).
a(n) = Hypergeometric2F0( [n+1, -n] ; - ; -1/2).
a(n) = A105749(n)/n!.
a(n) ~ exp(1)*(2n)!/(n!*2^n) as n -> oo. [See Grosswald, p. 124]
a(n) = A144301(n+1).
G.f.: 1/(1-x-x/(1-x-2*x/(1-x-3*x/(1-x-4*x/(1-x-5*x/(1-.... (continued fraction). - Paul Barry, Feb 08 2009
From Michael Somos, Apr 08 2012: (Start)
a(-1 - n) = a(n).
(a(n+1) + a(n+2))^2 = a(n)*a(n+2) + a(n+1)*a(n+3) for all integer n. (End)
G.f.: 1/G(0) where G(k) = 1 - x - x*(2*k+1)/(1 - x - 2*x*(k+1)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2012
E.g.f.: E(0)/(2*sqrt(1-2*x)), where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)*(1+sqrt(1-2*x))/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
G.f.: T(0)/(1-x), where T(k) = 1 - (k+1)*x/((k+1)*x - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
a(n) = (2*BesselI(1/2, 1)+BesselI(3/2, 1))*BesselK(n+1/2, 1). - Jean-François Alcover, Feb 03 2014
a(n) = exp(1)*sqrt(2/Pi)*BesselK(1/2+n,1). - Gerry Martens, Jul 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n) = (1/n!)*Integral_{x = 0..inf} exp(-x)*x^n*(1 + x/2)^n dx.
E.g.f.: d/dx( exp(x*c(x/2)) ) = 1 + 2*x + 7*x^2/2! + 37*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 2^n * hypergeometric1f1(-n; -2*n; 2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 2*t/(1-t)^2). (End)

Extensions

Extensively edited by N. J. A. Sloane, Dec 07 2008

A144301 a(0) = a(1) = 1; thereafter a(n) = (2*n-3)*a(n-1) + a(n-2).

Original entry on oeis.org

1, 1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 07 2008

Keywords

Comments

A variant of A001515, which is the main entry.
a(n) = number of increasing ordered trees on the vertex set [0,n] (counted by the double factorials A001147) in which n is the label on the leaf that terminates the leftmost path from the root. - David Callan, Aug 24 2011

Examples

			G.f. = 1 + x + 2*x^2 + 7*x^3 + 37*x^4 + 266*x^5 + 2431*x^6 + 27007*x^7 + ...
		

Crossrefs

See A001515 for much more about this sequence.
See A144498 for first differences.

Programs

  • Magma
    [1] cat [n le 1 select n+1 else (2*n-1)*Self(n) + Self(n-1): n in [0..20]]; // Vincenzo Librandi, Jul 23 2015
    
  • Mathematica
    a[n_]:= HypergeometricPFQ[{n, 1 - n}, {}, -1/2]; (* Michael Somos, Nov 22 2013 *)
    a[n_]:= With[{m= If[n<1, -n, n-1]}, Sum[(m+k)!/((m-k)! k! 2^k), {k,0,m}]]; (* Michael Somos, Nov 22 2013 *)
    RecurrenceTable[{a[0]==a[1]==1, a[n]==(2*n-3)*a[n-1] +a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Jul 23 2015 *)
    nxt[{n_,a_,b_}]:={n+1,b,b(2n-1)+a}; NestList[nxt,{1,1,1},30][[All,2]] (* Harvey P. Dale, Nov 29 2022 *)
  • PARI
    {a(n) = my(m = if( n<1, -n, n-1)); sum( k=0, m,  (m+k)! / (k! * (m-k)! * 2^k))}; /* Michael Somos, Nov 22 2013 */
    
  • SageMath
    def A144301(n): return int(n==0) + sum(binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1)) for k in range(n))
    [A144301(n) for n in range(31)] # G. C. Greubel, Sep 29 2023

Formula

a(n) = A001515(n-1) for n>= 1.
E.g.f.: A(x) = exp(1-sqrt(1-2*x)) satisfies A'(x) = A(x)/(1-sqrt(1-2*x)).
Hence a(n+1) = Sum_{k=0..n} ( a(n-k)*binomial(n,k)*(2*k)!/(k!*2^k) ).
A''(x) = (A'(x)/(1-2*x))*(1 + 1/sqrt(1-2*x)).
A''(x) = 2*x*A''(x) + A'(x) + A(x), which is equivalent to the recurrence in the definition.
a(n) = Sum_{k=0..n-1} binomial(n+k-1,2*k)*(2*k)!/(k!*2^k). [See Grosswald, p. 6, Eq. (8).]
a(n) ~ exp(1)*(2n-1)!/(n!*2^n) as n -> oo. [See Grosswald, p. 124]
From Sergei N. Gladkovskii, Oct 06 2012: (Start)
G.f.: 1+x/U(0) where U(k) = 1 - x - x*(2*k+1)/(1 - x - 2*x*(k+1)/U(k+1)); (continued fraction).
G.f.: 1+x*(1-x)/U(0) where U(k) = 1 - 3*x + x^2 - x*4*k - x^2*(2*k+1)*(2*k+2)/U(k+1) ; (continued fraction). (End)
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)*(1+sqrt(1-2*x))/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
G.f.: conjecture: 1 + x*(1-x)/(1-3*x+x^2)*Q(0), where Q(k) = 1 - 2*(k+1)*(2*k+1)*x^2/(2*(k+1)*(2*k+1)*x^2 - (1 - 3*x + x^2 - 4*x*k)*(1 - 7*x + x^2 - 4*x*k)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013
a(1 - n) = a(n) for all n in Z. (a(n+1) + a(n+2))^2 = a(n)*a(n+2) + a(n+1)*a(n+3) for all integer n. - Michael Somos, Nov 22 2013
G.f.: 1 + x/(1-x)*T(0), where T(k) = 1 - x*(k+1)/( x*(k+1) - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2013

Extensions

More terms from Vincenzo Librandi, Jul 23 2015

A144502 Square array read by antidiagonals upwards: T(n,k) is the number of scenarios for the gift exchange problem in which each gift can be stolen at most once, when there are n gifts in the pool and k gifts (not yet frozen) in peoples' hands.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 7, 7, 5, 1, 37, 37, 30, 16, 1, 266, 266, 229, 155, 65, 1, 2431, 2431, 2165, 1633, 946, 326, 1, 27007, 27007, 24576, 19714, 13219, 6687, 1957, 1, 353522, 353522, 326515, 272501, 198773, 119917, 53822, 13700, 1, 5329837, 5329837, 4976315, 4269271, 3289726, 2199722, 1205857, 486355, 109601, 1
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Examples

			The array, A(n,k), begins:
    1,    1,     1,      1,       1,        1, ...
    1,    2,     5,     16,      65,      326, ...
    2,    7,    30,    155,     946,     6687, ...
    7,   37,   229,   1633,   13219,   119917, ...
   37,  266,  2165,  19714,  198773,  2199722, ...
  266, 2431, 24576, 272501, 3289726, 42965211, ...
  ...
Antidiagonal triangle, T(n,k), begins as:
      1;
      1,     1;
      2,     2,     1;
      7,     7,     5,     1;
     37,    37,    30,    16,     1;
    266,   266,   229,   155,    65,    1;
   2431,  2431,  2165,  1633,   946,  326,    1;
  27007, 27007, 24576, 19714, 13219, 6687, 1957,   1;
		

Crossrefs

Rows include A000522, A144495, A144496, A144497.
Columns include A144301, A001515, A144498, A144499, A144500.
Main diagonal is A144501.
Antidiagonal sums give A144503.

Programs

  • Magma
    A144301:= func< n | (&+[ Binomial(n+k-1,2*k)*Factorial(2*k)/( Factorial(k)*2^k): k in [0..n]]) >;
    function A(n,k)
      if n eq 0 then return 1;
      elif k eq 0 then return A144301(n);
      elif k eq 1 then return A144301(n+1);
      else return A(n-1,k+1) + k*A(n,k-1);
      end if;
    end function;
    A144502:= func< n,k | A(n-k, k) >;
    [A144502(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
    
  • Maple
    B:=proc(p,r) option remember;
    if p=0 then RETURN(1); fi;
    if r=0 then RETURN(B(p-1,1)); fi;
    B(p-1,r+1)+r*B(p,r-1); end;
    seq(seq(B(d-k, k), k=0..d), d=0..9);
  • Mathematica
    t[0, ]= 1; t[n, 0]:= t[n, 0]= t[n-1, 1];
    t[n_, k_]:= t[n, k]= t[n-1, k+1] + k*t[n, k-1];
    Table[t[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
  • SageMath
    def A144301(n): return 1 if n<2 else (2*n-3)*A144301(n-1)+A144301(n-2)
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        elif k==0: return A144301(n)
        elif k==1: return A144301(n+1)
        else: return A(n-1,k+1) + k*A(n,k-1)
    def A144502(n,k): return A(n-k,k)
    flatten([[A144502(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023

Formula

Let A_n(x) be the e.g.f. for row n. Then A_0(x) = exp(x) and for n >= 1, A_n(x) = (d/dx)A_{n-1}(x)/(1-x).
For n >= 1, the rows A_{n}(x) = P_{n}(x)*exp(x)/(1-x)^(2*n), where P_{n}(x) = (1-x)*(d/dx)( P_{n-1}(x) ) + (2*n-x)*P_{n-1}(x) and P_{0}(x) = 1. - G. C. Greubel, Oct 08 2023

Extensions

6 more terms from Michel Marcus, Feb 01 2023

A144505 Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x).

Original entry on oeis.org

1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837
Offset: 0

Views

Author

N. J. A. Sloane, Dec 14 2008

Keywords

Examples

			The first few polynomials P[n] (n >= 0) are:
  P[0] = 1;
  P[1] = 1;
  P[2] = -x +2;
  P[3] =  x^2 -5*x +7;
  P[4] = -x^3 + 9*x^2 - 30*x +37;
  P[5] =  x^4 -14*x^3 + 81*x^2 - 229*x +266;
  P[6] = -x^5 +20*x^4 -175*x^3 + 835*x^2 -2165*x +2431;
  P[7] =  x^6 -27*x^5 +330*x^4 -2330*x^3 +9990*x^2 -24576*x +27007;
...
Triangle of coefficients begins:
   1;
   1;
  -1,   2;
   1,  -5,    7;
  -1,   9,  -30,     37;
   1, -14,   81,   -229,    266;
  -1,  20, -175,    835,  -2165,    2431;
   1, -27,  330,  -2330,   9990,  -24576,   27007;
  -1,  35, -567,   5495, -34300,  137466, -326515,   353522;
   1, -44,  910, -11522,  97405, -561386, 2148139, -4976315, 5329837;
...
		

Crossrefs

Columns give A001515 (really A144301), A144498, A001514, A144506, A144507.
Row sums give A001147.
Alternating row sums give A043301.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    f:= func< n,x | x^n*(&+[Binomial(n,j)*Factorial(n+j)*(1-1/x)^(n-j)/(2^j*Factorial(n)) : j in [0..n]]) >;
    T:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
    [1] cat [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 02 2023
    
  • Maple
    A[0]:=exp(x);
    P[0]:=1;
    for n from 1 to 12 do
    A[n]:=sort(simplify( diff(A[n-1],x)/(1-x)));
    P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x)));
    t1:=simplify(x^(degree(P[n],x))*subs(x=1/x,P[n]));
    t2:=series(t1,x,2*n+3);
    lprint(P[n]);
    lprint(seriestolist(t2));
    od:
  • Mathematica
    f[n_, x_]:= x^n*Sum[((n+j)!/((n-j)!*j!*2^j))*(1-1/x)^(n-j), {j,0,n}];
    t[n_, k_]:= Coefficient[Series[f[n,x], {x,0,30}], x, k];
    Join[{1}, Table[t[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Oct 02 2023 *)
  • SageMath
    P. = PowerSeriesRing(QQ, 50)
    def f(n,x): return x^n*sum(binomial(n,j)*rising_factorial(n+1,j)*(1-1/x)^(n-j)/2^j for j in range(n+1))
    def T(n,k): return P( f(n,x) ).list()[k]
    [1] + flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 02 2023

Formula

Let A[0](x) = exp(x), A[n](x) = A[n-1]'(x)/(1-x) for n>0 and let P[n](x) = A[n](x)*(1-x)^(2n-1)/exp(x). Row n of triangle gives coefficients of P[n](x) with exponents of x in decreasing order.
From Vladeta Jovovic, Dec 15 2008: (Start)
P[n] = Sum_{k=0..n} ((n+k)!/((n-k)!*k!*2^k)) * (1-x)^(n-k).
E.g.f.: exp((1-x)*(1-sqrt(1-2*y)))/sqrt(1-2*y). (End)

A144495 Row 2 of array in A144502.

Original entry on oeis.org

2, 7, 30, 155, 946, 6687, 53822, 486355, 4877250, 53759351, 646098622, 8409146187, 117836551730, 1768850337295, 28318532194206, 481652022466307, 8673291031865602, 164849403644999655, 3297954931572397790, 69274457019123638011, 1524368720086682440242
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Crossrefs

Programs

  • Magma
    A144495:= func< n | (&+[Binomial(n,k)*(k+4)*Factorial(k+1) : k in [0..n]])/2 >;
    [A144495(n): n in [0..40]]; // G. C. Greubel, Oct 07 2023
    
  • Maple
    f:= rectoproc({a(n)=((4+3*n)*a(n-1)-(n+3)*(n-1)*a(n-2)+(n-1)*(n-2)*a(n-3))/2,a(0)=2,a(1)=7,a(2)=30},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Oct 02 2016
  • Mathematica
    (* First program *)
    t[0, ] = 1; t[n, 0] := t[n, 0] = t[n-1, 1];
    t[n_, k_] := t[n, k] = t[n-1, k+1] + k*t[n, k-1];
    a[n_] := t[2, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 19 2022 *)
    (* Second program *)
    a[n_]:= a[n]= If[n==0, 2, (n*(n^2+3*n+1)*a[n-1] -(n+2))/(n^2+n-1)];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 07 2023 *)
  • SageMath
    def A144495(n): return sum(binomial(n,j)*factorial(j+1)*(j+4) for j in range(n+1))/2
    [A144495(n) for n in range(41)] # G. C. Greubel, Oct 07 2023

Formula

E.g.f.: exp(x)*(2-x)/(1-x)^3.
a(n) = (1/2) * (floor((n+1)*(n+1)!*e) + floor(n*n!*e)). [Gary Detlefs, Jun 06 2010]
a(n) = (1/2) * ( A001339(n) + A001339(n+1) ). [Gary Detlefs, Jun 06 2010]
a(n) = (1/2) * (3 + n + (1 + 3*n + n^2) * A000522(n)). - Gerry Martens, Oct 02 2016
a(n) = ((4+3*n)*a(n-1) - (n+3)*(n-1)*a(n-2) + (n-1)*(n-2)*a(n-3))/2. - Robert Israel, Oct 02 2016
From Peter Bala, May 27 2022: (Start)
a(n) = (1/2)*(A000522(n+2) - A000522(n)).
a(n) = (1/2)*Sum_{k = 0..n} binomial(n,k)*(k+4)*(k+1)!; binomial transform of A038720(n+1).
a(n) = (1/2)*e*Integral_{x >= 1} x^n*(x^2 - 1)*exp(-x).
a(2*n) is even and a(2*n+1) is odd. More generally, a(n+k) == a(n) (mod k) for all n and k. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with the exact period dividing k. Various divisibility properties of the sequence follow from this; for example, a(3*n+2) == 0 (mod 3), a(5*n+2) == a(5*n+3) (mod 5), a(7*n+1) == 0 (mod 7) and a(11*n+4) == 0 (mod 11). (End)
a(n) = (n*(n^2 + 3*n + 1)*a(n-1) - (n + 2))/(n^2 + n - 1), with a(0) = 2. - G. C. Greubel, Oct 07 2023

A144496 Row 3 of array in A144502.

Original entry on oeis.org

7, 37, 229, 1633, 13219, 119917, 1205857, 13318249, 160305343, 2088846709, 29297613277, 440110297777, 7050173910619, 119970793032253, 2161243124917849, 41091937905633337, 822320410135133047, 17277401903869659589, 380267691288777510613, 8749454854573455141889
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (7-5*x+x^2)*Exp(x)/(1-x)^5 ))); // G. C. Greubel, Oct 07 2023
    
  • Mathematica
    CoefficientList[Series[E^x*(7-5*x+x^2)/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
  • SageMath
    def a(n): # a = A144496
        if (n==0): return 7
        else: return (n*(n^4+10*n^3+33*n^2+44*n+21)*a(n-1) + n^2+6*n+7)/(n^4+6*n^3+9*n^2+4*n+1)
    [a(n) for n in range(41)] # G. C. Greubel, Oct 07 2023

Formula

E.g.f.: (7-5*x+x^2)*exp(x)/(1-x)^5.
a(n) ~ n! * n^4 * exp(1)/8. - Vaclav Kotesovec, Oct 08 2013
a(n) = (n*(n^4 + 10*n^3 + 33*n^2 + 44*n + 21)*a(n-1) + n^2 + 6*n +
7)/(n^4 + 6*n^3 + 9*n^2 + 4*n + 1), with a(0) = 7. - G. C. Greubel, Oct 07 2023

A144497 Row 4 of array in A144502.

Original entry on oeis.org

37, 266, 2165, 19714, 198773, 2199722, 26516581, 345921410, 4856217989, 73003575178, 1170146049557, 19921780455746, 359032158501205, 6828661185433514, 136693194501702533, 2872718327660671042, 63240895146440396261, 1455362908778264247050, 34945987212582211588789
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (37-30*x+9*x^2-x^3)*Exp(x)/(1-x)^7 ))); // G. C. Greubel, Oct 08 2023
    
  • Mathematica
    a[n_]:= If[n<1, 37, (n*(n^6+21*n^5+172*n^4+705*n^3+1522*n^2+1623*n +653)*a[n-1] -(n^3+12*n^2+41*n+37))/(n^6+15*n^5+82*n^4+207*n^3 +244*n^2+105*n-1)];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 08 2023 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7)) \\ Michel Marcus, Apr 06 2019
    
  • SageMath
    def A144497_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (37-30*x+9*x^2-x^3)*exp(x)/(1-x)^7 ).egf_to_ogf().list()
    A144497_list(40) # G. C. Greubel, Oct 08 2023

Formula

E.g.f.: exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7.
a(n) = (n*(n^6 + 21*n^5 + 172*n^4 + 705*n^3 + 1522*n^2 + 1623*n + 653)*a(n-1) - (n^3 + 12*n^2 + 41*n + 37))/(n^6 + 15*n^5 + 82*n^4 + 207*n^3 + 244*n^2 + 105*n - 1), with a(0) = 37. - G. C. Greubel, Oct 08 2023

A144500 Column 4 of array in A144502.

Original entry on oeis.org

1, 65, 946, 13219, 198773, 3289726, 60042295, 1203809111, 26367604594, 627370195033, 16127774194871, 445733080387750, 13185075339881521, 415765494276887249, 13925084982848794378, 493754789222478044011, 18480155500259244528605, 728143711886491334229526
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 13 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select (65)^(n-1) else ((24*n^3-12*n^2+2*n-9)*Self(n-1) + (12*n^2-11)*Self(n-2))/(12*(n-1)^2 -11): n in [1..40]]; // G. C. Greubel, Oct 08 2023
    
  • Mathematica
    a[n_]:= a[n]= If[n<2, (65)^n, ((24*n^3+60*n^2+50*n+5)*a[n-1] +(12*n^2 + 24*n+1)*a[n-2])/(12*n^2-11)];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 08 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A144500
        if (n<2): return (65)^n
        else: return ((24*n^3 + 60*n^2 + 50*n + 5)*a(n-1) + (12*n^2 + 24*n + 1)*a(n-2))/(12*n^2 - 11)
    [a(n) for n in range(41)] # G. C. Greubel, Oct 08 2023

Formula

a(n) = ((24*n^3 + 60*n^2 + 50*n + 5)*a(n-1) + (12*n^2 + 24*n + 1)*a(n-2))/(12*n^2 - 11), with a(0) = 1, a(1) = 65. - G. C. Greubel, Oct 08 2023

A144513 a(n) = Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k).

Original entry on oeis.org

2, 18, 162, 1670, 19980, 274932, 4296278, 75324762, 1466031690, 31386435410, 733391707752, 18578222154648, 507246285802802, 14851746921266010, 464244744007818090, 15431886798641124662, 543593886328031841828, 20228083875146926867932, 792934721766833544369830
Offset: 0

Views

Author

N. J. A. Sloane, Dec 16 2008

Keywords

Crossrefs

Equals 2*A001514 (with a different offset).

Programs

  • Maple
    f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..50)];
  • PARI
    {a(n) = sum(k=0, n, (n+k+2)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019

Formula

n^2*a(n) = (2*n+1)*(n^2+n+1)*a(n-1) + (n+1)^2*a(n-2). - Seiichi Manyama, Apr 07 2019

A144514 a(n) = Sum_{k=0..n} (n+k+3)!/((n-k)!*k!*2^k).

Original entry on oeis.org

6, 84, 1050, 13980, 205800, 3368316, 61075854, 1219445100, 26635157010, 632479986600, 16235529291696, 448220024574504, 13247429692101150, 417453231024613140, 13974133833217747650, 495278130521939366196, 18530507890959175097784, 729908595489477119015700
Offset: 0

Views

Author

N. J. A. Sloane, Dec 16 2008

Keywords

Crossrefs

Equals 6*A144506 (with a different offset).

Programs

  • Maple
    f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..50)];
  • Mathematica
    Table[Sum[(n+k+3)!/((n-k)!k! 2^k),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 27 2019 *)
  • PARI
    {a(n) = sum(k=0, n, (n+k+3)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019

Formula

a(n) ~ 2^(n + 7/2) * n^(n+3) / exp(n-1). - Vaclav Kotesovec, Apr 07 2019
Showing 1-10 of 11 results. Next