A001515
Bessel polynomial y_n(x) evaluated at x=1.
Original entry on oeis.org
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0
The first few Bessel polynomials are (cf. A001497, A001498):
y_0 = 1
y_1 = 1 + x
y_2 = 1 + 3*x + 3*x^2
y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (first 101 terms from T. D. Noe)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See p. 58.
- P. Blasiak, A. Horzela, K. A. Penson, G.H.E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 11.
- O. Frink and H. L. Krall, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
- E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
- Wojciech Mlotkowski and Anna Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- J. Riordan, Letter to N. J. A. Sloane, Jul. 1968
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
- N. J. A. Sloane, Letter to J. Riordan, Nov. 1970
- Index entries for sequences related to Bessel functions or polynomials
- Index entries for related partition-counting sequences
See
A144301 for other formulas and comments.
Replace "sets" with "lists" in comment:
A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence,
A144416,
A144508,
A144509,
A149187,
A281358,
A281359,
A281360,
A281361.
-
a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
-
[(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
-
A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
-
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
{a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
-
[sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
A144301
a(0) = a(1) = 1; thereafter a(n) = (2*n-3)*a(n-1) + a(n-2).
Original entry on oeis.org
1, 1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0
G.f. = 1 + x + 2*x^2 + 7*x^3 + 37*x^4 + 266*x^5 + 2431*x^6 + 27007*x^7 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..400
- E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
- W. Mlotkowski and A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
See
A001515 for much more about this sequence.
-
[1] cat [n le 1 select n+1 else (2*n-1)*Self(n) + Self(n-1): n in [0..20]]; // Vincenzo Librandi, Jul 23 2015
-
a[n_]:= HypergeometricPFQ[{n, 1 - n}, {}, -1/2]; (* Michael Somos, Nov 22 2013 *)
a[n_]:= With[{m= If[n<1, -n, n-1]}, Sum[(m+k)!/((m-k)! k! 2^k), {k,0,m}]]; (* Michael Somos, Nov 22 2013 *)
RecurrenceTable[{a[0]==a[1]==1, a[n]==(2*n-3)*a[n-1] +a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Jul 23 2015 *)
nxt[{n_,a_,b_}]:={n+1,b,b(2n-1)+a}; NestList[nxt,{1,1,1},30][[All,2]] (* Harvey P. Dale, Nov 29 2022 *)
-
{a(n) = my(m = if( n<1, -n, n-1)); sum( k=0, m, (m+k)! / (k! * (m-k)! * 2^k))}; /* Michael Somos, Nov 22 2013 */
-
def A144301(n): return int(n==0) + sum(binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1)) for k in range(n))
[A144301(n) for n in range(31)] # G. C. Greubel, Sep 29 2023
A144502
Square array read by antidiagonals upwards: T(n,k) is the number of scenarios for the gift exchange problem in which each gift can be stolen at most once, when there are n gifts in the pool and k gifts (not yet frozen) in peoples' hands.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 7, 7, 5, 1, 37, 37, 30, 16, 1, 266, 266, 229, 155, 65, 1, 2431, 2431, 2165, 1633, 946, 326, 1, 27007, 27007, 24576, 19714, 13219, 6687, 1957, 1, 353522, 353522, 326515, 272501, 198773, 119917, 53822, 13700, 1, 5329837, 5329837, 4976315, 4269271, 3289726, 2199722, 1205857, 486355, 109601, 1
Offset: 0
The array, A(n,k), begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 16, 65, 326, ...
2, 7, 30, 155, 946, 6687, ...
7, 37, 229, 1633, 13219, 119917, ...
37, 266, 2165, 19714, 198773, 2199722, ...
266, 2431, 24576, 272501, 3289726, 42965211, ...
...
Antidiagonal triangle, T(n,k), begins as:
1;
1, 1;
2, 2, 1;
7, 7, 5, 1;
37, 37, 30, 16, 1;
266, 266, 229, 155, 65, 1;
2431, 2431, 2165, 1633, 946, 326, 1;
27007, 27007, 24576, 19714, 13219, 6687, 1957, 1;
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
-
A144301:= func< n | (&+[ Binomial(n+k-1,2*k)*Factorial(2*k)/( Factorial(k)*2^k): k in [0..n]]) >;
function A(n,k)
if n eq 0 then return 1;
elif k eq 0 then return A144301(n);
elif k eq 1 then return A144301(n+1);
else return A(n-1,k+1) + k*A(n,k-1);
end if;
end function;
A144502:= func< n,k | A(n-k, k) >;
[A144502(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
-
B:=proc(p,r) option remember;
if p=0 then RETURN(1); fi;
if r=0 then RETURN(B(p-1,1)); fi;
B(p-1,r+1)+r*B(p,r-1); end;
seq(seq(B(d-k, k), k=0..d), d=0..9);
-
t[0, ]= 1; t[n, 0]:= t[n, 0]= t[n-1, 1];
t[n_, k_]:= t[n, k]= t[n-1, k+1] + k*t[n, k-1];
Table[t[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jan 14 2014, after Maple *)
-
def A144301(n): return 1 if n<2 else (2*n-3)*A144301(n-1)+A144301(n-2)
@CachedFunction
def A(n,k):
if n==0: return 1
elif k==0: return A144301(n)
elif k==1: return A144301(n+1)
else: return A(n-1,k+1) + k*A(n,k-1)
def A144502(n,k): return A(n-k,k)
flatten([[A144502(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023
A144505
Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x).
Original entry on oeis.org
1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837
Offset: 0
The first few polynomials P[n] (n >= 0) are:
P[0] = 1;
P[1] = 1;
P[2] = -x +2;
P[3] = x^2 -5*x +7;
P[4] = -x^3 + 9*x^2 - 30*x +37;
P[5] = x^4 -14*x^3 + 81*x^2 - 229*x +266;
P[6] = -x^5 +20*x^4 -175*x^3 + 835*x^2 -2165*x +2431;
P[7] = x^6 -27*x^5 +330*x^4 -2330*x^3 +9990*x^2 -24576*x +27007;
...
Triangle of coefficients begins:
1;
1;
-1, 2;
1, -5, 7;
-1, 9, -30, 37;
1, -14, 81, -229, 266;
-1, 20, -175, 835, -2165, 2431;
1, -27, 330, -2330, 9990, -24576, 27007;
-1, 35, -567, 5495, -34300, 137466, -326515, 353522;
1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837;
...
-
R:=PowerSeriesRing(Integers(), 50);
f:= func< n,x | x^n*(&+[Binomial(n,j)*Factorial(n+j)*(1-1/x)^(n-j)/(2^j*Factorial(n)) : j in [0..n]]) >;
T:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
[1] cat [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 02 2023
-
A[0]:=exp(x);
P[0]:=1;
for n from 1 to 12 do
A[n]:=sort(simplify( diff(A[n-1],x)/(1-x)));
P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x)));
t1:=simplify(x^(degree(P[n],x))*subs(x=1/x,P[n]));
t2:=series(t1,x,2*n+3);
lprint(P[n]);
lprint(seriestolist(t2));
od:
-
f[n_, x_]:= x^n*Sum[((n+j)!/((n-j)!*j!*2^j))*(1-1/x)^(n-j), {j,0,n}];
t[n_, k_]:= Coefficient[Series[f[n,x], {x,0,30}], x, k];
Join[{1}, Table[t[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Oct 02 2023 *)
-
P. = PowerSeriesRing(QQ, 50)
def f(n,x): return x^n*sum(binomial(n,j)*rising_factorial(n+1,j)*(1-1/x)^(n-j)/2^j for j in range(n+1))
def T(n,k): return P( f(n,x) ).list()[k]
[1] + flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 02 2023
Original entry on oeis.org
2, 7, 30, 155, 946, 6687, 53822, 486355, 4877250, 53759351, 646098622, 8409146187, 117836551730, 1768850337295, 28318532194206, 481652022466307, 8673291031865602, 164849403644999655, 3297954931572397790, 69274457019123638011, 1524368720086682440242
Offset: 0
-
A144495:= func< n | (&+[Binomial(n,k)*(k+4)*Factorial(k+1) : k in [0..n]])/2 >;
[A144495(n): n in [0..40]]; // G. C. Greubel, Oct 07 2023
-
f:= rectoproc({a(n)=((4+3*n)*a(n-1)-(n+3)*(n-1)*a(n-2)+(n-1)*(n-2)*a(n-3))/2,a(0)=2,a(1)=7,a(2)=30},a(n),remember):
map(f, [$0..40]); # Robert Israel, Oct 02 2016
-
(* First program *)
t[0, ] = 1; t[n, 0] := t[n, 0] = t[n-1, 1];
t[n_, k_] := t[n, k] = t[n-1, k+1] + k*t[n, k-1];
a[n_] := t[2, n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 19 2022 *)
(* Second program *)
a[n_]:= a[n]= If[n==0, 2, (n*(n^2+3*n+1)*a[n-1] -(n+2))/(n^2+n-1)];
Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 07 2023 *)
-
def A144495(n): return sum(binomial(n,j)*factorial(j+1)*(j+4) for j in range(n+1))/2
[A144495(n) for n in range(41)] # G. C. Greubel, Oct 07 2023
Original entry on oeis.org
7, 37, 229, 1633, 13219, 119917, 1205857, 13318249, 160305343, 2088846709, 29297613277, 440110297777, 7050173910619, 119970793032253, 2161243124917849, 41091937905633337, 822320410135133047, 17277401903869659589, 380267691288777510613, 8749454854573455141889
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (7-5*x+x^2)*Exp(x)/(1-x)^5 ))); // G. C. Greubel, Oct 07 2023
-
CoefficientList[Series[E^x*(7-5*x+x^2)/(1-x)^5, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
-
def a(n): # a = A144496
if (n==0): return 7
else: return (n*(n^4+10*n^3+33*n^2+44*n+21)*a(n-1) + n^2+6*n+7)/(n^4+6*n^3+9*n^2+4*n+1)
[a(n) for n in range(41)] # G. C. Greubel, Oct 07 2023
Original entry on oeis.org
37, 266, 2165, 19714, 198773, 2199722, 26516581, 345921410, 4856217989, 73003575178, 1170146049557, 19921780455746, 359032158501205, 6828661185433514, 136693194501702533, 2872718327660671042, 63240895146440396261, 1455362908778264247050, 34945987212582211588789
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (37-30*x+9*x^2-x^3)*Exp(x)/(1-x)^7 ))); // G. C. Greubel, Oct 08 2023
-
a[n_]:= If[n<1, 37, (n*(n^6+21*n^5+172*n^4+705*n^3+1522*n^2+1623*n +653)*a[n-1] -(n^3+12*n^2+41*n+37))/(n^6+15*n^5+82*n^4+207*n^3 +244*n^2+105*n-1)];
Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 08 2023 *)
-
my(x='x+O('x^25)); Vec(serlaplace(exp(x)*(37-30*x+9*x^2-x^3)/(1-x)^7)) \\ Michel Marcus, Apr 06 2019
-
def A144497_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( (37-30*x+9*x^2-x^3)*exp(x)/(1-x)^7 ).egf_to_ogf().list()
A144497_list(40) # G. C. Greubel, Oct 08 2023
Original entry on oeis.org
1, 65, 946, 13219, 198773, 3289726, 60042295, 1203809111, 26367604594, 627370195033, 16127774194871, 445733080387750, 13185075339881521, 415765494276887249, 13925084982848794378, 493754789222478044011, 18480155500259244528605, 728143711886491334229526
Offset: 0
-
[n le 2 select (65)^(n-1) else ((24*n^3-12*n^2+2*n-9)*Self(n-1) + (12*n^2-11)*Self(n-2))/(12*(n-1)^2 -11): n in [1..40]]; // G. C. Greubel, Oct 08 2023
-
a[n_]:= a[n]= If[n<2, (65)^n, ((24*n^3+60*n^2+50*n+5)*a[n-1] +(12*n^2 + 24*n+1)*a[n-2])/(12*n^2-11)];
Table[a[n], {n,0,40}] (* G. C. Greubel, Oct 08 2023 *)
-
@CachedFunction
def a(n): # a = A144500
if (n<2): return (65)^n
else: return ((24*n^3 + 60*n^2 + 50*n + 5)*a(n-1) + (12*n^2 + 24*n + 1)*a(n-2))/(12*n^2 - 11)
[a(n) for n in range(41)] # G. C. Greubel, Oct 08 2023
A144513
a(n) = Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k).
Original entry on oeis.org
2, 18, 162, 1670, 19980, 274932, 4296278, 75324762, 1466031690, 31386435410, 733391707752, 18578222154648, 507246285802802, 14851746921266010, 464244744007818090, 15431886798641124662, 543593886328031841828, 20228083875146926867932, 792934721766833544369830
Offset: 0
Equals 2*
A001514 (with a different offset).
-
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..50)];
-
{a(n) = sum(k=0, n, (n+k+2)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019
A144514
a(n) = Sum_{k=0..n} (n+k+3)!/((n-k)!*k!*2^k).
Original entry on oeis.org
6, 84, 1050, 13980, 205800, 3368316, 61075854, 1219445100, 26635157010, 632479986600, 16235529291696, 448220024574504, 13247429692101150, 417453231024613140, 13974133833217747650, 495278130521939366196, 18530507890959175097784, 729908595489477119015700
Offset: 0
Equals 6*
A144506 (with a different offset).
-
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..50)];
-
Table[Sum[(n+k+3)!/((n-k)!k! 2^k),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 27 2019 *)
-
{a(n) = sum(k=0, n, (n+k+3)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019
Showing 1-10 of 11 results.
Comments