cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006094 Products of 2 successive primes.

Original entry on oeis.org

6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, 2021, 2491, 3127, 3599, 4087, 4757, 5183, 5767, 6557, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 14351, 16637, 17947, 19043, 20711, 22499, 23707, 25591, 27221, 28891, 30967, 32399, 34571, 36863
Offset: 1

Views

Author

Keywords

Comments

The Huntley reference would suggest prefixing the sequence with an initial 4 - Enoch Haga. [But that would conflict with the definition! - N. J. A. Sloane, Oct 13 2009]
Sequence appears to coincide with the sequence of numbers n such that the largest prime < sqrt(n) and the smallest prime > sqrt(n) divide n. - Benoit Cloitre, Apr 04 2002
This is true: p(n) < [ sqrt(a(n)) = sqrt(p(n)*p(n+1)) ] < p(n+1) by definition. - Jon Perry, Oct 02 2013
a(n+1) = smallest number such that gcd(a(n), a(n+1)) = prime(n+1). - Alexandre Wajnberg and Ray Chandler, Oct 14 2005
Also the area of rectangles whose side lengths are consecutive primes. E.g., the consecutive primes 7,11 produce a 7 X 11 unit rectangle which has area 77 square units. - Cino Hilliard, Jul 28 2006
a(n) = A001358(A172348(n)); A046301(n) = lcm(a(n), a(n+1)); A065091(n) = gcd(a(n), a(n+1)); A066116(n+2) = a(n+1)*a(n); A109805(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 13 2011
See A209329 for the sum of the reciprocals. - M. F. Hasler, Jan 22 2013
A078898(a(n)) = 3. - Reinhard Zumkeller, Apr 06 2015

References

  • H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subset of the squarefree semiprimes, A006881.
Subsequence of A256617 and A097889.

Programs

  • Haskell
    a006094 n = a006094_list !! (n-1)
    a006094_list = zipWith (*) a000040_list a065091_list
    -- Reinhard Zumkeller, Mar 13 2011
    
  • Haskell
    a006094_list = pr a000040_list
      where pr (n:m:tail) = n*m : pr (m:tail)
            pr _ = []
    -- Jean-François Antoniotti, Jan 08 2020
    
  • Magma
    [NthPrime(n)*NthPrime(n+1): n in [1..41]]; // Bruno Berselli, Feb 24 2011
    
  • Maple
    a:= n-> (p-> p(n)*p(n+1))(ithprime):
    seq(a(n), n=1..43);  # Alois P. Heinz, Jan 02 2021
  • Mathematica
    Table[ Prime[n] Prime[n + 1], {n, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
    Times@@@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Oct 15 2011 *)
  • MuPAD
    ithprime(i)*ithprime(i+1) $ i = 1..41 // Zerinvary Lajos, Feb 26 2007
    
  • PARI
    g(n) = for(x=1,n,print1(prime(x)*prime(x+1)",")) \\ Cino Hilliard, Jul 28 2006
    
  • PARI
    is(n)=my(p=precprime(sqrtint(n))); p>1 && n%p==0 && isprime(n/p) && nextprime(p+1)==n/p \\ Charles R Greathouse IV, Jun 04 2014
    
  • Python
    from sympy import prime, primerange
    def aupton(nn):
        alst, prevp = [], 2
        for p in primerange(3, prime(nn+1)+1): alst.append(prevp*p); prevp = p
        return alst
    print(aupton(43)) # Michael S. Branicky, Jun 15 2021
    
  • Python
    from sympy import prime, nextprime
    def A006094(n): return (p:=prime(n))*nextprime(p) # Chai Wah Wu, Oct 18 2024

Formula

A209329 = Sum_{n>=2} 1/a(n). - M. F. Hasler, Jan 22 2013
a(n) = A000040(n) * A000040(n+1). - Alois P. Heinz, Jan 02 2021

A166329 Products of squares of 2 successive primes.

Original entry on oeis.org

36, 225, 1225, 5929, 20449, 48841, 104329, 190969, 444889, 808201, 1315609, 2301289, 3108169, 4084441, 6205081, 9778129, 12952801, 16703569, 22629049, 26863489, 33258289, 42994249, 54567769, 74528689, 95981209, 108222409
Offset: 1

Views

Author

Keywords

Examples

			2^2*3^2 = 36, 3^2*5^2 = 225, 5^2*7^2 = 1225, ..
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^2*NthPrime(n+1)^2: n in [1..30]]; // Vincenzo Librandi, May 10 2016
  • Mathematica
    Array[Prime[ # ]*Prime[ # ]*Prime[ #+1]*Prime[ #+1]&,5! ]
    Times@@@(Partition[Prime[Range[30]],2,1]^2) (* Harvey P. Dale, Apr 12 2018 *)
  • PARI
    a(n) = prime(n)^2*prime(n+1)^2; \\ Michel Marcus, May 10 2016
    

Formula

a(n) = A006094(n)^2. - Michel Marcus, May 10 2016

Extensions

Edited by N. J. A. Sloane, Oct 13 2009

A291339 Primes p such that p^3*q^3 + p^3 + q^3 is prime, where q is the next prime after p.

Original entry on oeis.org

2, 3, 7, 19, 37, 47, 83, 89, 107, 137, 181, 251, 257, 349, 379, 569, 631, 653, 677, 691, 797, 823, 839, 863, 883, 919, 1009, 1021, 1223, 1229, 1361, 1423, 1571, 1609, 1831, 1873, 1907, 1993, 2053, 2113, 2207, 2239, 2293, 2309, 2579, 2833, 3137, 3319, 3593, 3673
Offset: 1

Views

Author

K. D. Bajpai, Aug 22 2017

Keywords

Examples

			a(2) = 3 is prime; 5 is the next prime: 3^3*5^3 + 3^3 + 5^3 = 27*125 + 27 + 125 = 3527 that is a prime.
a(3) = 7 is prime; 11 is the next prime: 7^3*11^3 + 7^3 + 11^3 = 343*1331 + 343 + 1331 = 458207 that is a prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (5000) | IsPrime(p^3*q^3+p^3+q^3)];
    
  • Maple
    select(p -> andmap(isprime,[p,(p^3*nextprime(p)^3+p^3+nextprime(p)^3)]), [seq(p, p=1..10^4)]);
  • Mathematica
    Prime@Select[Range[1000], PrimeQ[Prime[#]^3*Prime[# + 1]^3 + Prime[#]^3 + Prime[# + 1]^3] &]
    Select[Partition[Prime[Range[600]],2,1],PrimeQ[Times@@(#^3)+Total[#^3]]&][[;;,1]] (* Harvey P. Dale, Apr 28 2025 *)
  • PARI
    is(n) = my(q=nextprime(n+1)); ispseudoprime(n^3*q^3+n^3+q^3)
    forprime(p=1, 3700, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Aug 22 2017
    
  • PARI
    list(lim)=my(v=List(),p=2,p3=8,q3); forprime(q=3,nextprime(lim\1+1), q3=q^3; if(isprime(p3*q3+p3+q3), listput(v,p)); p=q; p3=q3); Vec(v) \\ Charles R Greathouse IV, Aug 23 2017

A291374 Primes p such that p^3*q^3 + p + q is prime, where q is next prime after p.

Original entry on oeis.org

11, 17, 41, 43, 47, 137, 313, 359, 389, 401, 491, 557, 577, 709, 757, 829, 863, 929, 937, 953, 1129, 1163, 1249, 1301, 1307, 1439, 1597, 1627, 1693, 1847, 2087, 2311, 2351, 2437, 2663, 2731, 2741, 3109, 3119, 3217, 3253, 4027, 4219, 4271, 4547, 4637, 5189, 5237
Offset: 1

Views

Author

K. D. Bajpai, Aug 23 2017

Keywords

Examples

			a(1) = 11 is prime; 13 is the next prime: 11^3*13^3 + 11 + 13 = 1331*2197 + 11 + 13 = 2924231 that is a prime.
a(2) = 17 is prime; 19 is the next prime: 17^3*19^3 + 17 + 19 = 4913*6859 + 17 + 19 = 33698303 that is a prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | IsPrime(p^3*q^3 + p + q) where q is NextPrime(p)];
  • Maple
    select(p -> andmap(isprime, [p,(p^3*nextprime(p)^3+p+nextprime(p))]), [seq(p,p=1..10^4)]);
  • Mathematica
    Prime@Select[Range[1000], PrimeQ[Prime[#]^3* Prime[# + 1]^3 + Prime[#] + Prime[# + 1]] &]
  • PARI
    forprime(p=1,5000, q=nextprime(p+1); if(ispseudoprime(p^3*q^3 + p + q), print1(p, ", ")));
    
  • PARI
    list(lim)=my(v=List(),p=2,p3=8,q3); forprime(q=3,nextprime(lim\1+1), q3=q^3; if(isprime(p3*q3+p+q), listput(v,p)); p=q; p3=q3); Vec(v) \\ Charles R Greathouse IV, Aug 23 2017
    

A166502 The n-th power of the product prime(n)*prime(n+1) of 2 successive primes.

Original entry on oeis.org

6, 225, 42875, 35153041, 59797108943, 116507435287321, 366790143213462347, 1329999555322686599521, 26129584584668699724236347, 344823548950275944213556441001, 4520615782446712879799718786455203, 148534373731547764810930925932451123761
Offset: 1

Views

Author

Jonathan Vos Post, Oct 15 2009

Keywords

Examples

			A[k,n] = n-th product of k-th power of 2 successive primes begins:
===============================================================================
...|.n=1|..n=2|....n=3|.....n=4|......n=5|......n=6|......n=7|......n=8|.in.OEIS
================================================================================
k=1|...6|...15|.....35|......77|......143|......221|......323|......437|A006094
k=2|..36|..225|...1225|....5929|....20449|....48841|...104329|...104329|A166329
k=3|.216|.3375|..42875|..456533|..2924207|.10793861|.33698267|.83453453|A152241
k=4|1296|50625|1500625|35153041|418161601|.........|.........|.........|.......
================================================================================
		

Crossrefs

Programs

  • Maple
    A166502 := proc(n) ithprime(n)*ithprime(n+1) ; %^n ; end: seq(A166502(n),n=1..15) ; # R. J. Mathar, Oct 16 2009
  • Mathematica
    With[{nn=20},(Times@@#[[2]])^#[[1]]&/@Thread[{Range[nn-1],Partition[ Prime[ Range[ nn]],2,1]}]] (* Harvey P. Dale, Jan 12 2015 *)
  • PARI
    a(n) = (prime(n)*prime(n+1))^n; \\ Michel Marcus, May 05 2019

Formula

a(n) = Product_{i=n..n+1} prime(i)^n = (A000040(n)*A000040(n+1))^n. [corrected by R. J. Mathar, Oct 16 2009]
a(n) = A006094(n)^n. - Michel Marcus, May 05 2019

A258155 Products of squares of three successive primes.

Original entry on oeis.org

900, 11025, 148225, 1002001, 5909761, 17631601, 55190041, 160604929, 427538329, 1106427169, 2211538729, 4255083361, 6865945321, 11473194769, 21599886961, 36384418009, 58145123689, 84202691329, 120590202121, 167655034849, 229116352921, 340557446329, 513428138521
Offset: 1

Views

Author

K. D. Bajpai, May 22 2015

Keywords

Examples

			a(1) = 900 = 2^2 * 3^2 * 5^2;
a(2) = 11025 = 3^2 * 5^2 * 7^2.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[n]^2 Prime[n + 1]^2 Prime[n + 2]^2, {n, 50}]
  • PARI
    for( n= 1,100, k= prime(n)^2 * prime(n+1)^2 * prime(n+2)^2; print1(k, ", "))

Formula

a(n) = A046301(n)^2. - Michel Marcus, May 22 2015
a(n) ~ n^3 log^3 n. - Charles R Greathouse IV, May 22 2015

A291464 Primes p such that p^3*q^3 + p^2 + q^2 is prime, where q is next prime after p.

Original entry on oeis.org

2, 11, 13, 41, 97, 277, 389, 1093, 1229, 1409, 1429, 1627, 1823, 1931, 1979, 2437, 2521, 2549, 2657, 2689, 2719, 2729, 2731, 2969, 3019, 3413, 3539, 3593, 3613, 3623, 3697, 4003, 4027, 4289, 4327, 4583, 4751, 5051, 5323, 5503, 5657, 5783, 6143, 6221, 6299, 6329
Offset: 1

Views

Author

K. D. Bajpai, Aug 24 2017

Keywords

Examples

			a(1) = 2 is prime; 3 is the next prime: 2^3*3^3 + 2^2 + 3^2 = 8*27 + 4 + 9 = 229 that is a prime.
a(2) = 11 is prime; 13 is the next prime: 11^3*13^3 + 11^2 + 13^2 = 1331*2197 + 121 + 169 = 2924497 that is a prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | IsPrime(p^3*q^3 + p^2 + q^2) where q is NextPrime(p)];
  • Maple
    select(p -> andmap(isprime,[p,(p^3*nextprime(p)^3+p^2+nextprime(p)^2)]), [seq(p, p=1..10^4)]);
  • Mathematica
    Select[Prime[Range[5000]], PrimeQ[#^3*NextPrime[#]^3 + #^2 + NextPrime[#]^2] &]
    Select[Partition[Prime[Range[1000]],2,1],PrimeQ[#[[1]]^3 #[[2]]^3+#[[1]]^2+#[[2]]^2]&][[;;,1]] (* Harvey P. Dale, Sep 11 2023 *)
  • PARI
    forprime(p=1, 5000, q=nextprime(p+1); p3=p^3; p2=p^2; q3=q^3; q2=q^2; if(ispseudoprime(p3*q3 + p2 + q2), print1(p, ", ")));
    
Showing 1-7 of 7 results.