cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A003945 Expansion of g.f. (1+x)/(1-2*x).

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013

Crossrefs

Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.

Programs

  • Maple
    k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
    CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A167938 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170743, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) )); // G. C. Greubel, Sep 09 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-23*t+275*t^16-253*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 09 2023 *)
    coxG[{16,253,-22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 18 2022 *)
  • SageMath
    def A167938_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) ).list()
    A167938_list(40) # G. C. Greubel, Sep 09 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 253*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1).
From G. C. Greubel, Sep 09 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 23*t + 275*t^16 - 253*t^17).
a(n) = 22*Sum_{j=1..15} a(n-j) - 253*a(n-16). (End)

A167940 Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785600, 2751882854400, 66045188505600, 1585084524134400, 38042028579225600, 913008685901414400, 21912208461633945600, 525893003079214694400
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170744, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) )); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    coxG[{16,276,-23}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 05 2015 *)
    CoefficientList[Series[(1+t)*(1-t^16)/(1-24*t+299*t^16-276*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
  • SageMath
    def A167940_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) ).list()
    A167940_list(40) # G. C. Greubel, Sep 08 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 276*t^16 - 23*t^15 - 23*t^14 - 23*t^13 - 23*t^12 - 23*t^11 - 23*t^10 - 23*t^9 - 23*t^8 - 23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1).
From G. C. Greubel, Sep 08 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 24*t + 299*t^16 - 276*t^17).
a(n) = 23*Sum_{j=1..15} a(n-j) - 276*a(n-16). (End)

A164681 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518235, 4462207664772, 169563890192073, 6443427786666780, 244850254349321868, 9304309606601631648, 353563762821303227856, 13435422902486289765684
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^7)/(1 -38*x +740*x^7 -703*x^8) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(x^7 + 2 x^6 + 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 + 2 x + 1)/(703 x^7 - 37 x^6 - 37 x^5 - 37 x^4 - 37 x^3 - 37 x^2 - 37 x + 1), {x, 0, 20}], x ] (* Vincenzo Librandi, Apr 29 2014 *)
    coxG[{7, 703, -37}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^7)/(1-38*x+740*x^7-703*x^8)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^7)/(1 -38*x +740*x^7 -703*x^8)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1)/(703*x^7 - 37*x^6 - 37*x^5 - 37*x^4 - 37*x^3 - 37*x^2 - 37*x + 1).
G.f.: (1+x)*(1-x^7)/(1 -38*x +740*x^7 -703*x^8). - G. C. Greubel, Apr 26 2019

A166691 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547227, 353563778431304766468, 13435423580389580056521
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 23 2016, modified Apr 26 2019 *)
    coxG[{12,703,-37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 10 2017 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^12 - 37*t^11 - 37*t^10 - 37*t^9 -37*t^8 -37*t^7 -37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -38*x +740*x^12 -703*x^13). - G. C. Greubel, Apr 26 2019
a(n) = -703*a(n-12) + 37*Sum_{k=1..11} a(n-k). - Wesley Ivan Hurt, May 06 2021

A167942 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) )); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-26*t+350*t^16-325*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
    coxG[{16,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 28 2018 *)
  • SageMath
    def A167942_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) ).list()
    A167942_list(40) # G. C. Greubel, Sep 08 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 325*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
From G. C. Greubel, Sep 08 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 26*t + 350*t^16 - 325*t^17).
a(n) = 25*Sum_{j=1..15} a(n-j) - 325*a(n-16). (End)

A162871 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 39, 1482, 55575, 2083692, 78111033, 2928135600, 109766289945, 4114781688966, 154249795892907, 5782323668697966, 216760526662519203, 8125647855742321632, 304604136609884440797, 11418619374984439210164
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[39,1482,55575];; for n in [4..15] do a[n]:=37*a[n-1]+37*a[n-2]-703*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(703*x^3-37*x^2-37*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    coxG[{3,703,-37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 25 2018 *)
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -38*x +740*x^3 -703*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(703*t^3 - 37*t^2 - 37*t + 1).
a(n) = 37*a(n-1) + 37*a(n-2) - 703*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 38*x + 740*x^3 - 703*x^4). - G. C. Greubel, Apr 27 2019

A163222 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 39, 1482, 56316, 2139267, 81263988, 3086962281, 117263934684, 4454486050560, 169211838474861, 6427822638540342, 244172655087350379, 9275347010187982854, 352341101130365494992, 13384324210123816783899
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-38*x+740*x^4-703*x^5) )); // G. C. Greubel, Apr 30 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(703*t^4-37*t^3-37*t^2 - 37*t+1), {t,0,20}], t] (* or *) Join[{1}, LinearRecurrence[{37, 37, 37, -703}, {39, 1482, 56316, 2139267}, 20]] (* G. C. Greubel, Dec 11 2016 *)
    coxG[{4, 703, -37}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(703*t^4-37*t^3 - 37*t^2-37*t+1)) \\ G. c. Greubel, Dec 11 2016
    
  • Sage
    ((1+x)*(1-x^4)/(1-38*x+740*x^4-703*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
a(n) = 37*a(n-1)+37*a(n-2)+37*a(n-3)-703*a(n-4). - Wesley Ivan Hurt, May 06 2021

A163668 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 39, 1482, 56316, 2140008, 81319563, 3090115236, 117423309705, 4462045136796, 169556171182476, 6443075832883092, 244834652131935645, 9303632060115383718, 353534798919570074859, 13434200024194718979990
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[39, 1482, 56316, 2140008, 81319563];; for n in [6..20] do a[n]:=37*(a[n-1]+a[n-2] +a[n-3]+a[n-4]) -703*a[n-5]; od; Concatenation([1], a); # G. C. Greubel, May 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-38*x+740*x^5-703*x^6) )); // G. C. Greubel, May 23 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-38*x+740*x^5-703*x^6), {x, 0, 20}], x] (* G. C. Greubel, Aug 01 2017 *)
    coxG[{5, 703, -37}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 23 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-38*x+740*x^5-703*x^6)) \\ G. C. Greubel, Aug 01 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-38*x+740*x^5-703*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 23 2019
    

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
a(n) = 37*a(n-1)+37*a(n-2)+37*a(n-3)+37*a(n-4)-703*a(n-5). - Wesley Ivan Hurt, May 11 2021

A166171 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949250331, 244850262071484420, 9304309958715338697, 353563778431142238492, 13435423580381861046924
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-38*t+740*t^10-703*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-38*t+740*t^10-703*t^11), {t,0,30}], t] (* G. C. Greubel, May 06 2016 *)
    coxG[{703, 10, -37}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 11 2020 *)
  • Sage
    def A166171_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^10)/(1-38*t+740*t^10-703*t^11) ).list()
    A166171_list(30) # G. C. Greubel, Aug 10 2019

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^10 - 37*t^9 - 37*t^8 - 37*t^7 - 37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
Showing 1-10 of 53 results. Next