A005251 a(0) = 0, a(1) = a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
0, 1, 1, 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, 170625, 299426, 525456, 922111, 1618192, 2839729, 4983377, 8745217, 15346786, 26931732, 47261895, 82938844, 145547525, 255418101, 448227521
Offset: 0
Examples
From _Joerg Arndt_, Jan 26 2013: (Start) The a(5+2) = 12 compositions of 5 where no two adjacent parts are != 1 are [ 1] [ 1 1 1 1 1 ] [ 2] [ 1 1 1 2 ] [ 3] [ 1 1 2 1 ] [ 4] [ 1 1 3 ] [ 5] [ 1 2 1 1 ] [ 6] [ 1 3 1 ] [ 7] [ 1 4 ] [ 8] [ 2 1 1 1 ] [ 9] [ 2 1 2 ] [10] [ 3 1 1 ] [11] [ 4 1 ] [12] [ 5 ] (End) G.f. = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 21*x^8 + 37*x^9 + ...
References
- S. Burckel, Efficient methods for three strand braids (submitted). [Apparently unpublished]
- P. Chinn and S. Heubach, "Compositions of n with no occurrence of k", Congressus Numeratium, 2002, v. 162, pp. 33-51.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205.
- R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
- Andrei Asinowski and Cyril Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
- R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.
- J.-L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016). See Table 4.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- N. Bergeron, S. Mykytiuk, F. Sottile and S. van Willigenburg, Shifted quasisymmetric functions and the Hopf algebra of peak functions, arXiv:math/9904105 [math.CO], 1999.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 11.
- A. Blecher, C. Brennan, A. Knopfmacher and H. Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 112.
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Properties of a Ternary Infinite Word, arXiv:2206.01776 [cs.DM], 2022.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Complement Avoidance in Binary Words, arXiv:2209.09598 [math.CO], 2022.
- J. Demetrovics et al., On the number of unions in a family of sets, in Combinatorial Math., Proc. 3rd Internat. Conf., Annals NY Acad. Sci., 555 (1989), 150-158.
- R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.
- Nazim Fatès, Biswanath Sethi, and Sukanta Das, On the Reversibility of ECAs with Fully Asynchronous Updating: The Recurrence Point of View, in Reversibility and Universality, Andrew Adamatzky, editor, Emergence, Complexity and Computation Vol. 30. Springer, 2018.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1986
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,2).
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 98
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart. 44 (2006), no. 4, 335-340.
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras II. Satisfaction of bracketing identities, spectrum dichotomy, arXiv:2011.08522 [math.CO], 2020.
- J. J. Madden, A generating function for the distribution of runs in binary words, arXiv:1707.04351 [math.CO], 2017, Theorem 1.1, r=2, k=0.
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=2, 0 peaks.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Nicolas Ollinger and Jeffrey Shallit, The Repetition Threshold for Rote Sequences, arXiv:2406.17867 [math.CO], 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- A. G. Shannon, Some recurrence relations for binary sequence matrices, NNTDM 17 (2011), 4, 913.
- Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Crossrefs
Cf. A001608, A004148, A005314, A006498, A011973, A049864, A049853, A078065, A118891, A173022, A176971, A178470, A261041, A303696, A329871, A384153.
Bisection of Padovan sequence A000931.
Compositions without adjacent equal parts are A003242.
Compositions without isolated parts are A114901.
Row sums of A097230(n-2) for n>1.
Programs
-
Haskell
a005251 n = a005251_list !! n a005251_list = 0 : 1 : 1 : 1 : zipWith (+) a005251_list (drop 2 $ zipWith (+) a005251_list (tail a005251_list)) -- Reinhard Zumkeller, Dec 28 2011
-
Magma
I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-4): n in [1..45]]; // Vincenzo Librandi, Nov 30 2018
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)/(1-2*x + x^2 - x^3) )); // Marius A. Burtea, Oct 24 2019 -
Maple
A005251 := proc(n) option remember; if n <= 2 then n elif n = 3 then 4 else 2*A005251(n - 1) - A005251(n - 2) + A005251(n - 3); fi; end; A005251:=(-1+z)/(-1+2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation a := n -> `if`(n<=1, n, hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4)): seq(simplify(a(n)), n=0..36); # Peter Luschny, Apr 08 2018
-
Mathematica
LinearRecurrence[{2,-1,1},{0,1,1},40] (* Harvey P. Dale, May 05 2011 *) a[ n_]:= If[n<0, SeriesCoefficient[ -x(1-x)/(1 -x + 2x^2 -x^3), {x, 0, -n}], SeriesCoefficient[ x(1-x)/(1 -2x +x^2 -x^3), {x, 0, n}]] (* Michael Somos, Dec 13 2013 *) a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n-2] + a[n-3]; Table[a[2 n-1], {n, 1, 20}] (* Rigoberto Florez, Oct 15 2019 *) Table[If[n==0,0,Length[DeleteCases[Subsets[Range[n-3]],{_,x_,y_,_}/;x+2==y]]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
-
PARI
Vec((1-x)/(1-2*x+x^2-x^3)+O(x^99)) /* Charles R Greathouse IV, Nov 20 2012 */
-
PARI
{a(n) = if( n<0, polcoeff( -x*(1-x)/(1 -x +2*x^2 -x^3) + x*O(x^-n), -n), polcoeff( x*(1-x)/(1 -2*x +x^2 -x^3) + x*O(x^n), n))} /* Michael Somos, Dec 13 2013 */
-
SageMath
[sum( binomial(n-j-1, 2*j) for j in (0..floor((n-1)/3)) ) for n in (0..50)] # G. C. Greubel, Apr 13 2022
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3).
G.f.: z*(1-z)/(1 - 2*z + z^2 - z^3). - Emeric Deutsch, Sep 13 2004
23*a_n = 3*P_{2n+1} + 7*P_{2n} - 2*P_{2n-1}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
a(n+1) = Sum_{k=0..n} binomial(n-k, 2k). - Richard L. Ollerton, May 12 2004
From Henry Bottomley, Feb 21 2001: (Start)
a(n) = (Sum_{j
a(n) = A049853(n-1) - a(n-1).
a(n) = A005314(n) - a(n-2). (End)
a(n+2) has g.f. (F_3(-x) + F_2(-x))/(F_4(-x) + F_3(-x)) = 1/(-x+1/(-x+1/(-x+1))) where F_n(x) is the n-th Fibonacci polynomial; see A011973. - Qiaochu Yuan (qchu(AT)mit.edu), Feb 19 2009
a(n) = A173022(2^(n-2) - 1) for n > 1. - Reinhard Zumkeller, Feb 07 2010
BINOMIAL transform of A176971 is a(n+1). - Michael Somos, Dec 13 2013
a(n) = hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4) for n > 1. - Peter Luschny, Apr 08 2018
G.f.: z/(1-z-z^3-z^4-z^5-...) for the compositions of n-1 avoiding 2. The g.f. for the number of compositions of n avoiding the part k is 1/(1-z-...-z^(k-1) - z^(k+1)-...). - Gregory L. Simay, Sep 09 2018
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = (p-1)*p^n/((p-q)*(p-r)) + (q-1)*q^n/((q-p)*(q-r)) + (r-1)*r^n/((r-p)*(r-q)). - Greg Dresden and AnXing Yang, Aug 12 2025
A144795 A positive integer n is included if every 1 in binary n is next to at least one other 1.
3, 6, 7, 12, 14, 15, 24, 27, 28, 30, 31, 48, 51, 54, 55, 56, 59, 60, 62, 63, 96, 99, 102, 103, 108, 110, 111, 112, 115, 118, 119, 120, 123, 124, 126, 127, 192, 195, 198, 199, 204, 206, 207, 216, 219, 220, 222, 223, 224, 227, 230, 231, 236, 238, 239, 240, 243, 246
Offset: 1
Comments
n is included if A144790(n) >= 2.
A173024 is a subsequence. - Reinhard Zumkeller, Feb 07 2010
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
isA144795 := proc(n) local bind,i ; bind := convert(n,base,2) ; for i from 1 to nops(bind) do if i = 1 then if op(i,bind) = 1 and op(i+1,bind) = 0 then RETURN(false) : fi; elif i = nops(bind) then if op(i,bind) = 1 and op(i-1,bind) = 0 then RETURN(false) : fi; else if op(i,bind) = 1 and op(i-1,bind) = 0 and op(i+1,bind) = 0 then RETURN(false) : fi; fi; od: RETURN(true) ; end: for n from 3 to 400 do if isA144795(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 29 2008
-
Mathematica
Select[Range@ 250, AllTrue[Map[Length, Select[Split@ IntegerDigits[#, 2], First@ # == 1 &]], # > 1 &] &] (* Michael De Vlieger, Aug 20 2017 *)
Extensions
Extended by R. J. Mathar, Sep 29 2008
A173021 Number of numbers <= n whose binary representation is without isolated ones or isolated double ones.
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0
Examples
a(30) = #{0, 7, 14, 15, 28, 30} = #{0, 111, 1110, 1111, 11100, 11110} = 6.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
ioQ[n_]:=Module[{idn2=Split[IntegerDigits[n,2]]},FreeQ[idn2,{1}]&&FreeQ[ idn2,{1,1}]]; Accumulate[Table[If[ioQ[n],1,0],{n,0,90}]] (* Harvey P. Dale, May 15 2016 *)
A173023 Number of numbers <= n whose binary representation contains no isolated digits "11".
1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 9, 9, 9, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 17, 17, 17, 17, 18, 19, 20, 21, 22, 23, 24, 24, 25, 26, 26, 27, 28, 29, 30, 30, 30, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47
Offset: 0
Examples
a(20) = #{0,1,2,4,5,7,8,9,10,14,15,16,17,18,20} = #{0,1,10,100,101,111,1000,1001,1010,1110,1111,10000,10001,10010,10100} = 15.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
Accumulate[Table[If[Count[Split[IntegerDigits[n,2]],{1,1}]>0,0,1],{n,0,80}]] (* Harvey P. Dale, Feb 12 2017 *)
Comments