cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A062952 Multiplicative with a(p^e) = (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1).

Original entry on oeis.org

1, 4, 9, 18, 25, 36, 49, 78, 87, 100, 121, 162, 169, 196, 225, 326, 289, 348, 361, 450, 441, 484, 529, 702, 645, 676, 807, 882, 841, 900, 961, 1334, 1089, 1156, 1225, 1566, 1369, 1444, 1521, 1950, 1681, 1764, 1849, 2178, 2175, 2116, 2209, 2934, 2443, 2580
Offset: 1

Views

Author

Vladeta Jovovic, Jul 21 2001

Keywords

Comments

If k is squarefree (cf. A005117) then A062952(k) = k^2. - Benoit Cloitre, Apr 16 2002
Inverse Möbius transform of A062354(n). - Wesley Ivan Hurt, Jul 26 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*e+2)-p^(e+1)-p^e+p)/(p^2-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 50] (* Amiram Eldar, Jul 31 2019 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = Sum_{d|n} phi(d)*sigma(d).
a(n) = Sum_{k=1..n} sigma(n/gcd(n, k)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A183699 * A330523 / 3. - Amiram Eldar, Oct 30 2022

A347213 Decimal expansion of zeta(2) + zeta(3).

Original entry on oeis.org

2, 8, 4, 6, 9, 9, 0, 9, 7, 0, 0, 0, 7, 8, 2, 0, 7, 2, 1, 8, 7, 2, 1, 5, 3, 3, 2, 8, 1, 5, 7, 4, 7, 5, 1, 7, 9, 9, 8, 3, 9, 3, 6, 1, 9, 3, 5, 4, 7, 2, 9, 7, 3, 1, 9, 5, 2, 7, 8, 2, 9, 7, 8, 4, 7, 1, 1, 8, 4, 5, 6, 7, 6, 1, 8, 9, 5, 1, 3, 9, 6, 4, 0, 2, 0, 0, 8
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			2.8469909700078207218721533281574751799839361...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[2] + Zeta[3], 10, 100][[1]] (* Amiram Eldar, Jun 09 2022 *)
  • PARI
    zeta(2)+zeta(3) \\ Michel Marcus, Aug 24 2021

Formula

Equals 1 + Sum_{k>=2} k * (k - Sum_{i=2..k} zeta(i)) (Kouba, 2014). - Amiram Eldar, Jun 09 2022

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

Original entry on oeis.org

2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Comments

Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017

Examples

			0.2288103976033537597687461489416887919325093427198821602294071...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

Formula

Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).

A258986 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3).

Original entry on oeis.org

7, 1, 1, 5, 6, 6, 1, 9, 7, 5, 5, 0, 5, 7, 2, 4, 3, 2, 0, 9, 6, 9, 7, 3, 8, 0, 6, 0, 8, 6, 4, 0, 2, 6, 1, 2, 0, 9, 2, 5, 6, 1, 2, 0, 4, 4, 3, 8, 3, 3, 9, 2, 3, 6, 4, 9, 2, 2, 2, 2, 4, 9, 6, 4, 5, 7, 6, 8, 6, 0, 8, 5, 7, 4, 5, 0, 5, 8, 2, 6, 5, 1, 1, 5, 4, 2, 5, 2, 3, 4, 4, 6, 3, 6, 0, 0, 7, 9, 8, 9, 6, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.711566197550572432096973806086402612092561204438339236492222496457686...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

  • Mathematica
    RealDigits[(9/2)*Zeta[5] - 2*Zeta[2]*Zeta[3], 10, 103] // First
  • PARI
    zetamult([2,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = (9/2)*zeta(5) - 2*zeta(2)*zeta(3).
Equals Sum_{i, j >= 1} 1/(i^3*j^2*binomial(i+j, i)). More generally, for n >= 2, Sum_{i, j >= 1} 1/(i^n*j^2*binomial(i+j, i)) = zeta(2)*zeta(n) - zeta(n+2) - zeta(n,2). - Peter Bala, Aug 05 2025

A183700 Decimal expansion of zeta(3)*zeta(4), the product of two Riemann zeta values.

Original entry on oeis.org

1, 3, 0, 1, 0, 1, 4, 1, 1, 4, 5, 3, 2, 4, 8, 8, 5, 7, 4, 1, 5, 4, 4, 1, 1, 1, 7, 4, 2, 1, 6, 8, 3, 5, 5, 7, 0, 9, 9, 9, 0, 3, 1, 7, 4, 8, 7, 0, 2, 7, 2, 2, 2, 1, 7, 3, 0, 3, 9, 0, 4, 4, 6, 5, 1, 9, 4, 6, 2, 0, 1, 7, 5, 0, 3, 9, 8, 3, 5, 3, 0, 2, 6, 3, 8, 2, 5, 6, 9, 9, 9, 3, 0, 5, 0, 8, 8, 6, 4, 6, 7, 1, 9, 1, 6, 1, 6, 5, 5, 7, 4, 9, 0, 1, 5, 1, 1, 7, 5, 8, 1, 4, 1, 6, 0, 7, 6, 9, 5, 0, 7, 7, 6, 7, 0, 0, 7, 5, 8, 4, 3, 4, 8, 0, 1, 1, 5, 6, 9, 9, 8
Offset: 1

Views

Author

R. J. Mathar, Jan 06 2011

Keywords

Comments

Equals the Dirichlet zeta-function sum_{n>=1} A000203(n)/n^s at s=4.

Examples

			Equals 1.301014114532488574154...
		

Crossrefs

Cf. A183699 (s=3).

Programs

  • Maple
    evalf(Zeta(3)*Zeta(4)) ;
  • Mathematica
    RealDigits[N[Zeta[3] * Zeta[4], 75]][[1]] (* Alonso del Arte, Jan 06 2011 *)

Formula

Equals A002117 * A013662.

A288418 a(n) = Sum_{d|n} d^2*A000593(n/d).

Original entry on oeis.org

1, 5, 13, 21, 31, 65, 57, 85, 130, 155, 133, 273, 183, 285, 403, 341, 307, 650, 381, 651, 741, 665, 553, 1105, 806, 915, 1210, 1197, 871, 2015, 993, 1365, 1729, 1535, 1767, 2730, 1407, 1905, 2379, 2635, 1723, 3705, 1893, 2793, 4030, 2765, 2257, 4433, 2850, 4030
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000290 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 27 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), this sequence (k=2), A288419 (k=3), A288420 (k=4).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Function[d, d^2*DivisorSum[n/d, If[OddQ[#], #, 0]&]] ];
    Array[a, 50] (* Jean-François Alcover, Jul 03 2017 *)
    f[p_, e_] := (p^(e + 1) - 1)*(p^(e + 2) - 1)/((p - 1)*(p^2 - 1)); f[2, e_] := (4^(e + 1) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*sigma((n/d)>>valuation(n/d, 2))); \\ Michel Marcus, Jul 03 2017; corrected Jun 12 2022

Formula

L.g.f.: log(Product_{k>=1} (1 + x^k)^sigma(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jun 19 2018
From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A001001(n) for odd n.
Multiplicative with a(2^e) = (4^(e+1)-1)/3 and a(p^e) = (p^(e+1)-1)*(p^(e+2)-1)/((p-1)*(p^2-1)) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)*zeta(3)/4 = A183699 / 4 = 0.494326... . (End)

A322485 The sum of the semi-unitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 11, 10, 18, 12, 20, 14, 24, 24, 19, 18, 30, 20, 30, 32, 36, 24, 44, 26, 42, 31, 40, 30, 72, 32, 39, 48, 54, 48, 50, 38, 60, 56, 66, 42, 96, 44, 60, 60, 72, 48, 76, 50, 78, 72, 70, 54, 93, 72, 88, 80, 90, 60, 120, 62, 96, 80, 71, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

A semi-unitary divisor of n is defined as the largest divisor d of n such that the largest divisor of d that is a unitary divisor of n/d is 1 (see A322483).

Examples

			The semi-unitary divisors of 8 are 1, 2, 8 (4 is not semi-unitary divisor since the largest divisor of 4 that is a unitary divisor of 8/4 = 2 is 2 > 1), and their sum is 11, thus a(8) = 11.
		

References

  • J. Chidambaraswamy, Sum functions of unitary and semi-unitary divisors, J. Indian Math. Soc., Vol. 31 (1967), pp. 117-126.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^Floor[(e+1)/2] - 1)/(p-1) + p^e; susigma[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Array[susigma, 100]
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, my(p=f[k,1], e=f[k,2]); f[k,1] = (p^((e+1)\2) - 1)/(p-1) + p^e; f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Dec 14 2018

Formula

Multiplicative with a(p^e) = sigma(p^floor((e-1)/2)) + p^e = (p^floor((e+1)/2) - 1)/(p-1) + p^e.
In particular a(p) = p + 1, a(p^2) = p^2 + 1, a(p^3) = p^3 + p + 1.
a(n) <= A000203(n) with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^5) = 0.7004703314... . - Amiram Eldar, Nov 24 2022

A369717 The sum of divisors of the smallest powerful number that is a multiple of n.

Original entry on oeis.org

1, 7, 13, 7, 31, 91, 57, 15, 13, 217, 133, 91, 183, 399, 403, 31, 307, 91, 381, 217, 741, 931, 553, 195, 31, 1281, 40, 399, 871, 2821, 993, 63, 1729, 2149, 1767, 91, 1407, 2667, 2379, 465, 1723, 5187, 1893, 931, 403, 3871, 2257, 403, 57, 217, 3991, 1281, 2863
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p^2 + p + 1, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i,2] == 1, f[i,2] = 2)); sigma(f);}

Formula

a(n) = A000203(A197863(n)).
Multiplicative with a(p) = p^2 + p + 1 and a(p^e) = (p^(e+1)-1)/(p-1) for e >= 2.
a(n) >= A000203(n), with equality if and only if n is powerful (A001694).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-3) - 1/p^(2*s-2) + 1/p^(3*s-3)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^6 - 1/p^7) = 1.01304866467771286896... .

A369718 The sum of unitary divisors of the smallest powerful number that is a multiple of n.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 9, 10, 130, 122, 50, 170, 250, 260, 17, 290, 50, 362, 130, 500, 610, 530, 90, 26, 850, 28, 250, 842, 1300, 962, 33, 1220, 1450, 1300, 50, 1370, 1810, 1700, 234, 1682, 2500, 1850, 610, 260, 2650, 2210, 170, 50, 130, 2900, 850, 2810, 140
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p^2 + 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1 + f[i,1]^2, 1 + f[i,1]^f[i,2]));}

Formula

a(n) = A034448(A197863(n)).
Multiplicative with a(p) = p^2 + 1 and a(p^e) = p^e + 1 for e >= 2.
a(n) >= A034448(n), with equality if and only if n is powerful (A001694).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(s-1) - 1/p^(2*s-3) + 1/p^(3*s-3) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^6 - 2/p^7 + 1/p^8) = 0.73644353930922037459... .

A123732 Decimal expansion of Sum_{m>=1} (-1)Sigma(m)/m^3.

Original entry on oeis.org

1, 4, 6, 4, 0, 0, 3, 5, 4, 3, 6, 0, 3, 1, 8, 2, 0, 2, 5, 9, 3, 8, 4, 2, 4, 8, 9, 4, 3, 4, 5, 4, 2, 7, 0, 8, 9, 8, 3, 9, 6, 1, 9, 9, 5, 7, 9, 4, 9, 4, 5, 6, 7, 6, 8, 3, 0, 5, 3, 5, 6, 4, 5, 9, 0, 5, 4, 7, 2, 8, 9, 5, 4, 8, 5, 0, 5, 8, 5, 3, 9, 9, 7, 8, 8, 4, 9, 2, 3, 6, 7, 4, 5, 1, 2, 6, 2, 6, 6, 0, 6, 2, 3, 3, 3
Offset: 1

Views

Author

Yasutoshi Kohmoto, Nov 18 2006

Keywords

Comments

The sum over (-1)Sigma(m)/m^2 is divergent.

Examples

			1.46400354360318202593842489434542708983961995794945...
		

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + (p^3-p^2+1)/((p-1)^2*(p+1)*(p^2+p+1))) \\ Amiram Eldar, Aug 26 2022

Formula

Equals Sum_{m>=1} A049060(m)/m^3.
Equals Product_{p prime} (1 + (p^3-p^2+1)/((p-1)^2*(p+1)*(p^2+p+1))). - Amiram Eldar, Aug 26 2022

Extensions

40 more digits from R. J. Mathar, Dec 19 2010
More terms from Amiram Eldar, Aug 26 2022
Showing 1-10 of 18 results. Next