cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068601 a(n) = n^3 - 1.

Original entry on oeis.org

0, 7, 26, 63, 124, 215, 342, 511, 728, 999, 1330, 1727, 2196, 2743, 3374, 4095, 4912, 5831, 6858, 7999, 9260, 10647, 12166, 13823, 15624, 17575, 19682, 21951, 24388, 26999, 29790, 32767, 35936, 39303, 42874, 46655, 50652, 54871, 59318, 63999, 68920
Offset: 1

Views

Author

Naohiro Nomoto, Mar 28 2002

Keywords

Comments

a(n) is the least positive integer k such that k can only contain 'n-1' in exactly 2 different bases B, where 1 < B <= k.
Apart from the first term, the same as A135300. - R. J. Mathar, Apr 29 2008
A058895(n)^3 + a(n)^3 + A033562(n)^3 = A185065(n)^3. - Vincenzo Librandi, Mar 13 2012
Numbers k such that for every nonnegative integer m, k^(3*m+1) + k^(3*m) is a cube. - Arkadiusz Wesolowski, Aug 10 2013

Examples

			For n=6; 215 written in bases 6 and 42 is 555, 55 and (555, 55) are exactly 2 different bases.
		

Crossrefs

Programs

Formula

Partial sums of A003215, hex (or centered hexagonal) numbers: 3*n(n+1)+1. - Jonathan Vos Post, Mar 16 2006
G.f.: x^2*(7-2*x+x^2)/(1-x)^4. - Colin Barker, Feb 12 2012
4*a(m^2-2*m+2) = (m^2-m+1)^3 + (m^2-m-1)^3 + (m^2-3*m+3)^3 + (m^2-3*m+1)^3. - Bruno Berselli, Jun 23 2014
a(n) = Sum_{i=1..n-1} (i+1)^3 - i^3. - Wesley Ivan Hurt, Jul 23 2014
Sum_{n>=2} 1/a(n) = Sum_{n>=1} (zeta(3*n) - 1) = A339604. - Amiram Eldar, Nov 06 2020
Product_{n>=2} (1 + 1/a(n)) = 3*Pi*sech(sqrt(3)*Pi/2). - Amiram Eldar, Jan 20 2021
E.g.f.: 1 + exp(x)*(x^3 + 3*x^2 + x - 1). - Stefano Spezia, Jul 06 2021

A058895 a(n) = n^4 - n.

Original entry on oeis.org

0, 0, 14, 78, 252, 620, 1290, 2394, 4088, 6552, 9990, 14630, 20724, 28548, 38402, 50610, 65520, 83504, 104958, 130302, 159980, 194460, 234234, 279818, 331752, 390600, 456950, 531414, 614628, 707252, 809970, 923490, 1048544, 1185888, 1336302, 1500590, 1679580
Offset: 0

Views

Author

Henry Bottomley, Jan 08 2001

Keywords

Comments

a(n) is the number of ways to assign 4 different students to n different dorm rooms, each of which can hold at most 3 students. In other words, a(n) is the number of functions f:[4]->[n] with the size of the pre-image set of each element of the codomain at most 3. - Dennis P. Walsh, Mar 21 2013
a(n) are the values of m that yield integer solutions to this family of equations: x = sqrt(m + sqrt(x)), which may also be viewed as an infinitely recursive radical. The real solutions for x at each m = a(n) is n^2, except at n = 1 (m = 0) where x = 0 or 1 is a solution. - Richard R. Forberg, Oct 15 2014

Crossrefs

Programs

Formula

a(n) = n*(n-1)*(n^2+n+1) = A000583(n) - n = A002061(n+1) * A002378(n-1) = (n-1) * A027444(n) = -n * A024001(n).
a(n) = 2*A027482(n). - Zerinvary Lajos, Jan 28 2008
a(n) = floor(n^7/(n^3+1)). - Gary Detlefs, Feb 11 2010
a(n)^3 = (a(n)/n)^4 + (a(n)/n)^3. - Vincenzo Librandi, Feb 23 2012
a(n)^3 + A068601(n)^3 + A033562(n)^3 = A185065(n)^3, for n > 0. - Vincenzo Librandi, Mar 13 2012
G.f.: 2*x^2*(7 + 4*x + x^2)/(1 - x)^5. - Colin Barker, Apr 23 2012
a(n) = 14*C(n,2) + 36*C(n,3) + 24*C(n,4). - Dennis P. Walsh, Mar 21 2013
Sum_{n>=2} (-1)^n/a(n) = (Pi/3)*sech(Pi*sqrt(3)/2) + 4*log(2)/3 - 1 = 0.06147271494... . - Amiram Eldar, Jul 04 2020
Sum_{n>=2} 1/a(n) = A339605. - R. J. Mathar, Jan 08 2021
E.g.f.: exp(x)*x^2*(7 + 6*x + x^2). - Stefano Spezia, Jul 09 2021
a(n) = 12*A000332(n+2) + 2*A000537(n-1). - Yasser Arath Chavez Reyes, Apr 05 2024

A033562 a(n) = 2*n^3 + 1.

Original entry on oeis.org

1, 3, 17, 55, 129, 251, 433, 687, 1025, 1459, 2001, 2663, 3457, 4395, 5489, 6751, 8193, 9827, 11665, 13719, 16001, 18523, 21297, 24335, 27649, 31251, 35153, 39367, 43905, 48779, 54001, 59583, 65537, 71875, 78609, 85751, 93313, 101307, 109745, 118639, 128001
Offset: 0

Views

Author

Keywords

Comments

A058895(n)^3 + A068601(n)^3 + a(n)^3 = A185065(n)^3, for n>0. - Vincenzo Librandi, Mar 13 2012

Crossrefs

Programs

Formula

G.f.: 1 + x*(3 + 5*x + 5*x^2 - x^3)/(1-x)^4. - Vincenzo Librandi, Mar 13 2012
E.g.f.: (1 + 2*x + 6*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Oct 12 2019

Extensions

Terms a(34) onward added by G. C. Greubel, Oct 12 2019

A117716 Triangle T(n,k) read by rows: the coefficient [x^n] of x^2/(1-(k+1)*x-x^3) in row n, columns 0 <= k <= n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 1, 4, 9, 16, 25, 2, 9, 28, 65, 126, 217, 3, 20, 87, 264, 635, 1308, 2415, 4, 44, 270, 1072, 3200, 7884, 16954, 32960, 6, 97, 838, 4353, 16126, 47521, 119022, 264193, 534358, 9, 214, 2601, 17676, 81265, 286434, 835569, 2117656, 4815801, 10050030
Offset: 0

Views

Author

Roger L. Bagula, Apr 13 2006, corrected Apr 15 2006

Keywords

Examples

			Triangle begins as:
  0;
  0,  0;
  1,  1,   1;
  1,  2,   3,    4;
  1,  4,   9,   16,   25;
  2,  9,  28,   65,  126,  217;
  3, 20,  87,  264,  635, 1308,  2415;
  4, 44, 270, 1072, 3200, 7884, 16954, 32960;
		

Crossrefs

Cf. A000930 (column 0), A008998 (column 1), A052541 (column 2), A052927 (column 3), A001093 (row 5), A185065 (row 6), A117715, A117724.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A117716:= func< n,k | Coefficient(R!( x^2/(1-(k+1)*x-x^3) ), n) >;
    [[A117716(n,k): k in [0..n]]: n in [0..m]]; // G. C. Greubel, Jul 23 2023
    
  • Maple
    A117716 := proc(n,m)
            x^2/(1-(m+1)*x-x^3) ;
            if n < 0 then
                    0;
            else
                    coeftayl(%,x=0,n) ;
            end if;
    end proc: # R. J. Mathar, May 14 2013
  • Mathematica
    T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x-x^3), {x,0,n+ 2}], x, n];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A117716(n,k):
        P. = PowerSeriesRing(QQ)
        return P( x^2/(1-(k+1)*x-x^3) ).list()[n]
    flatten([[A117716(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 23 2023

Extensions

Edited by G. C. Greubel, Jul 23 2023

A204767 Quadruples (a,b,c,d) of the form ( n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2) ).

Original entry on oeis.org

0, 0, 3, 3, 14, 7, 17, 20, 78, 26, 55, 87, 252, 63, 129, 264, 620, 124, 251, 635, 1290, 215, 433, 1308, 2394, 342, 687, 2415, 4088, 511, 1025, 4112, 6552, 728, 1459, 6579, 9990, 999, 2001, 10020, 14630, 1330, 2663, 14663, 20724, 1727, 3457, 20760, 28548, 2196, 4395, 28587
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2012

Keywords

Comments

Four consecutive (a,b,c,d) in the sequence are solutions to a^3+b^3+c^3 = d^3, that is a(4k+1)^3+a(4k+2)^3+a(4k+3)^3 = a(4k+4)^3.
Also, A058895(n)^3 + A068601(n)^3 + A033562(n)^3 = A185065(n)^3.
The sequence corresponds to the case m=1 in the identity (n*(n^3-m^3))^3+(m*(n^3-m^3))^3+(m*(2*n^3+m^3))^3 = (n*(n^3+2*m^3))^3.
G. H. Hardy and E. M. Wright gave this identity in their "An Introduction to the Theory of Numbers" together with (n*(n^3-2*m^3))^3+(m*(n^3+m^3))^3+(m*(2*n^3-m^3))^3 = (n*(n^3+m^3))^3 (see References). - Bruno Berselli, Mar 13 2012

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 2008 (Sixth edition), Par. 13.7.

Crossrefs

Programs

  • Magma
    &cat[[n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2)]: n in [1..40]];
  • Mathematica
    Flatten[Table[{n^4 - n, n^3 - 1, 2 n^3 + 1, n^4 + 2 n}, {n, 1, 40}]] (* Vincenzo Librandi, Jan 02 2014 *)
Showing 1-5 of 5 results.