cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007504 Sum of the first n primes.

Original entry on oeis.org

0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n)^2 - a(n-1)^2 = A034960(n). - Gary Detlefs, Dec 20 2011
This is true. Proof: By definition we have A034960(n) = Sum_{k = (a(n-1)+1)..a(n)} (2*k-1). Since Sum_{k = 1..n} (2*k-1) = n^2, it follows A034960(n) = a(n)^2 - a(n-1)^2, for n > 1. - Hieronymus Fischer, Sep 27 2012 [formulas above adjusted to changed offset of A034960 - Hieronymus Fischer, Oct 14 2012]
Row sums of the triangle in A037126. - Reinhard Zumkeller, Oct 01 2012
Ramanujan noticed the apparent identity between the prime parts partition numbers A000607 and the expansion of Sum_{k >= 0} x^a(k)/((1-x)...(1-x^k)), cf. A046676. See A192541 for the difference between the two. - M. F. Hasler, Mar 05 2014
For n > 0: row 1 in A254858. - Reinhard Zumkeller, Feb 08 2015
a(n) is the smallest number that can be partitioned into n distinct primes. - Alonso del Arte, May 30 2017
For a(n) < m < a(n+1), n > 0, at least one m is a perfect square.
Proof: For n = 1, 2, ..., 6, the proposition is clear. For n > 6, a(n) < ((prime(n) - 1)/2)^2, set (k - 1)^2 <= a(n) < k^2 < ((prime(n) + 1)/2)^2, then k^2 < (k - 1)^2 + prime(n) <= a(n) + prime(n) = a(n+1), so m = k^2 is this perfect square. - Jinyuan Wang, Oct 04 2018
For n >= 5 we have a(n) < ((prime(n)+1)/2)^2. This can be shown by noting that ((prime(n)+1)/2)^2 - ((prime(n-1)+1)/2)^2 - prime(n) = (prime(n)+prime(n-1))*(prime(n)-prime(n-1)-2)/4 >= 0. - Jianing Song, Nov 13 2022
Washington gives an oscillation formula for |a(n) - pi(n^2)|, see links. - Charles R Greathouse IV, Dec 07 2022

References

  • E. Bach and J. Shallit, §2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A122989 for the value of Sum_{n >= 1} 1/a(n).

Programs

  • GAP
    P:=Filtered([1..250],IsPrime);;
    a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Oct 07 2018
    
  • Haskell
    a007504 n = a007504_list !! n
    a007504_list = scanl (+) 0 a000040_list
    -- Reinhard Zumkeller, Oct 01 2014, Oct 03 2011
    
  • Magma
    [0] cat [&+[ NthPrime(k): k in [1..n]]: n in [1..50]]; // Bruno Berselli, Apr 11 2011 (adapted by Vincenzo Librandi, Nov 27 2015 after Hasler's change on Mar 05 2014)
    
  • Maple
    s1:=[2]; for n from 2 to 1000 do s1:=[op(s1),s1[n-1]+ithprime(n)]; od: s1;
    A007504 := proc(n)
        add(ithprime(i), i=1..n) ;
    end proc: # R. J. Mathar, Sep 20 2015
  • Mathematica
    Accumulate[Prime[Range[100]]] (* Zak Seidov, Apr 10 2011 *)
    primeRunSum = 0; Table[primeRunSum = primeRunSum + Prime[k], {k, 100}] (* Zak Seidov, Apr 16 2011 *)
  • PARI
    A007504(n) = sum(k=1,n,prime(k)) \\ Michael B. Porter, Feb 26 2010
    
  • PARI
    a(n) = vecsum(primes(n)); \\ Michel Marcus, Feb 06 2021
    
  • Python
    from itertools import accumulate, count, islice
    from sympy import prime
    def A007504_gen(): return accumulate(prime(n) if n > 0 else 0 for n in count(0))
    A007504_list = list(islice(A007504_gen(),20)) # Chai Wah Wu, Feb 23 2022

Formula

a(n) ~ n^2 * log(n) / 2. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 24 2001 (see Bach & Shallit 1996)
a(n) = A014284(n+1) - 1. - Jaroslav Krizek, Aug 19 2009
a(n+1) - a(n) = A000040(n+1). - Jaroslav Krizek, Aug 19 2009
a(A051838(n)) = A002110(A051838(n)) / A116536(n). - Reinhard Zumkeller, Oct 03 2011
a(n) = min(A068873(n), A073619(n)) for n > 1. - Jonathan Sondow, Jul 10 2012
a(n) = A033286(n) - A152535(n). - Omar E. Pol, Aug 09 2012
For n >= 3, a(n) >= (n-1)^2 * (log(n-1) - 1/2)/2 and a(n) <= n*(n+1)*(log(n) + log(log(n))+ 1)/2. Thus a(n) = n^2 * log(n) / 2 + O(n^2*log(log(n))). It is more precise than in Fares's comment. - Vladimir Shevelev, Aug 01 2013
a(n) = (n^2/2)*(log n + log log n - 3/2 + (log log n - 3)/log n + (2 (log log n)^2 - 14 log log n + 27)/(4 log^2 n) + O((log log n/log n)^3)) [Sinha]. - Charles R Greathouse IV, Jun 11 2015
G.f: (x*b(x))/(1-x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016
a(n) = A008472(A002110(n)), for n > 0. - Michel Marcus, Jul 16 2020

Extensions

More terms from Stefan Steinerberger, Apr 11 2006
a(0) = 0 prepended by M. F. Hasler, Mar 05 2014

A000607 Number of partitions of n into prime parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40, 46, 52, 60, 67, 77, 87, 98, 111, 124, 140, 157, 175, 197, 219, 244, 272, 302, 336, 372, 413, 456, 504, 557, 614, 677, 744, 819, 899, 987, 1083, 1186, 1298, 1420, 1552, 1695, 1850, 2018, 2198, 2394, 2605, 2833, 3079, 3344
Offset: 0

Views

Author

Keywords

Comments

a(n) gives the number of values of k such that A001414(k) = n. - Howard A. Landman, Sep 25 2001
Let W(n) = {prime p: There is at least one number m whose spf is p, and sopfr(m) = n}. Let V(n,p) = {m: sopfr(m) = n, p belongs to W(n)}. Then a(n) = sigma(|V(n,p)|). E.g.: W(10) = {2,3,5}, V(10,2) = {30,32,36}, V(10,3) = {21}, V(10,5) = {25}, so a(10) = 3+1+1 = 5. - David James Sycamore, Apr 14 2018
From Gus Wiseman, Jan 18 2020: (Start)
Also the number of integer partitions such that the sum of primes indexed by the parts is n. For example, the sum of primes indexed by the parts of the partition (3,2,1,1) is prime(3)+prime(2)+prime(1)+prime(1) = 12, so (3,2,1,1) is counted under a(12). The a(2) = 1 through a(14) = 10 partitions are:
1 2 11 3 22 4 32 41 33 5 43 6 44
21 111 31 221 222 42 322 331 51 52
211 1111 311 321 411 421 332 431
2111 2211 2221 2222 422 3222
11111 3111 3211 3221 3311
21111 22111 4111 4211
111111 22211 22221
31111 32111
211111 221111
1111111
(End)

Examples

			n = 10 has a(10) = 5 partitions into prime parts: 10 = 2 + 2 + 2 + 2 + 2 = 2 + 2 + 3 + 3 = 2 + 3 + 5 = 3 + 7 = 5 + 5.
n = 15 has a(15) = 12 partitions into prime parts: 15 = 2 + 2 + 2 + 2 + 2 + 2 + 3 = 2 + 2 + 2 + 3 + 3 + 3 = 2 + 2 + 2 + 2 + 2 + 5 = 2 + 2 + 2 + 2 + 7 = 2 + 2 + 3 + 3 + 5 = 2 + 3 + 5 + 5 = 2 + 3 + 3 + 7 = 2 + 2 + 11 = 2 + 13 = 3 + 3 + 3 + 3 + 3 = 3 + 5 + 7 = 5 + 5 + 5.
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 203.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
  • D. M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
  • L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

G.f. = 1 / g.f. for A046675. See A046113 for the ordered (compositions) version.
Row sums of array A116865 and of triangle A261013.
Column sums of A331416.
Partitions whose Heinz number is divisible by their sum of primes are A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.

Programs

  • Haskell
    a000607 = p a000040_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Magma
    [1] cat [#RestrictedPartitions(n,{p:p in PrimesUpTo(n)}): n in [1..100]]; // Marius A. Burtea, Jan 02 2019
  • Maple
    with(gfun):
    t1:=mul(1/(1-q^ithprime(n)),n=1..51):
    t2:=series(t1,q,50):
    t3:=seriestolist(t2); # fixed by Vaclav Kotesovec, Sep 14 2014
  • Mathematica
    CoefficientList[ Series[1/Product[1 - x^Prime[i], {i, 1, 50}], {x, 0, 50}], x]
    f[n_] := Length@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]; Array[f, 57] (* Robert G. Wilson v, Jul 23 2010 *)
    Table[Length[Select[IntegerPartitions[n],And@@PrimeQ/@#&]],{n,0,60}] (* Harvey P. Dale, Apr 22 2012 *)
    a[n_] := a[n] = If[PrimeQ[n], 1, 0]; c[n_] := c[n] = Plus @@ Map[# a[#] &, Divisors[n]]; b[n_] := b[n] = (c[n] + Sum[c[k] b[n - k], {k, 1, n - 1}])/n; Table[b[n], {n, 1, 20}] (* Thomas Vogler, Dec 10 2015: Uses Euler transform, caches computed values, faster than IntegerPartitions[] function. *)
    nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = -1; Do[p = Prime[k]; Do[poly[[j + 1]] -= poly[[j + 1 - p]], {j, nmax, p, -1}];, {k, 2, pmax}]; s = Sum[poly[[k + 1]]*x^k, {k, 0, Length[poly] - 1}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2021 *)
  • PARI
    N=66;x='x+O('x^N); Vec(1/prod(k=1,N,1-x^prime(k))) \\ Joerg Arndt, Sep 04 2014
    
  • Python
    from sympy import primefactors
    l = [1, 0]
    for n in range(2, 101):
        l.append(sum(sum(primefactors(k)) * l[n - k] for k in range(1, n + 1)) // n)
    l  # Indranil Ghosh, Jul 13 2017
    
  • Sage
    [Partitions(n, parts_in=prime_range(n + 1)).cardinality() for n in range(100)]  # Giuseppe Coppoletta, Jul 11 2016
    

Formula

Asymptotically a(n) ~ exp(2 Pi sqrt(n/log n) / sqrt(3)) (Ayoub).
a(n) = (1/n)*Sum_{k=1..n} A008472(k)*a(n-k). - Vladeta Jovovic, Aug 27 2002
G.f.: 1/Product_{k>=1} (1-x^prime(k)).
See the partition arrays A116864 and A116865.
From Vaclav Kotesovec, Sep 15 2014 [Corrected by Andrey Zabolotskiy, May 26 2017]: (Start)
It is surprising that the ratio of the formula for log(a(n)) to the approximation 2 * Pi * sqrt(n/(3*log(n))) exceeds 1. For n=20000 the ratio is 1.00953, and for n=50000 (using the value from Havermann's tables) the ratio is 1.02458, so the ratio is increasing. See graph above.
A more refined asymptotic formula is found by Vaughan in Ramanujan J. 15 (2008), pp. 109-121, and corrected by Bartel et al. (2017): log(a(n)) = 2*Pi*sqrt(n/(3*log(n))) * (1 - log(log(n))/(2*log(n)) + O(1/log(n))).
See Bartel, Bhaduri, Brack, Murthy (2017) for a more complete asymptotic expansion. (End)
G.f.: 1 + Sum_{i>=1} x^prime(i) / Product_{j=1..i} (1 - x^prime(j)). - Ilya Gutkovskiy, May 07 2017
a(n) = A184198(n) + A184199(n). - Vaclav Kotesovec, Jan 11 2021

A046676 Expansion of 1 + Sum_{k>=1} x^(p_1+p_2+...+p_k)/((1-x)*(1-x^2)*(1-x^3)*...*(1-x^k)) (where p_i are the primes).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 60, 69, 78, 89, 99, 113, 126, 143, 159, 179, 199, 224, 248, 277, 307, 343, 378, 421, 464, 515, 567, 628, 690, 763, 837, 923, 1012, 1115, 1219, 1340, 1465, 1607
Offset: 0

Views

Author

Keywords

Comments

Ramanujan considered that this could equal the prime parts partition numbers A000607, but they differ from the 20th term on, cf. A192541. See A238804 for a correct variant, where the coefficient and power of x^{...} are adjusted to match A000607. - M. F. Hasler, Mar 06 2014

References

  • B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.

Crossrefs

Differs from A000607 at the 20th term. Cf. A192541.

Programs

  • Maple
    t3:=1+add(q^sum(ithprime(i),i=1..j)/mul(1-q^i,i=1..j), j=1..51);
    t4:=series(t3,q,50);
    t5:=seriestolist(%);
  • PARI
    Vec(sum(i=0,25,x^sum(k=1,i,prime(k))/prod(k=1,i,1-x^k),O(x^99))) \\ M. F. Hasler, Mar 05 2014
    
  • PARI
    A046676(n,S=1,P=1+O(x^(n+1)))={for(k=1,n, nM. F. Hasler, Mar 05 2014

A238882 Coefficients in a variant of Ramanujan's wrong identity for prime number partitions.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -2, 2, -1, 3, 1, 2, 1, -1, -4, 1, -4, -4, -10, -2, -8, -4, -5, -4, -1, 1, 2, 5, 6, 13, 12, 16, 18, 21, 25, 23, 30, 22, 23, 21, 21, 18, 14, 8, -1, -9, -20, -36, -36, -51, -61, -75, -80, -96, -103
Offset: 0

Views

Author

M. F. Hasler, Mar 06 2014

Keywords

Comments

Consider the g.f. of the prime parts partition numbers, GF = 1/Product_{k>=1} (1-x^prime(k)), cf. A000607. Then consecutively subtract a(n)*x^b(n)/Product_{k=1..n} (1-x^k), n=0,1,2,3,... where a(n)*x^b(n) is the leading term of the remaining expression, GF - previously subtracted terms. Sequence A238804 lists the exponents b(n), here we list the coefficients a(n).
The identity Ramanujan considered, GF = Sum_{n>=0} x^Sum_{k=1..n} prime(k)/Product_{k=1..n} (1-x^k), or A000607 = A046676, is wrong: In the way they are defined above, the pattern of b(n) = (sum of first n primes) breaks after b(4)=17; the pattern a(n)=1 breaks also after n=4 (which yields this sequence), and the nontrivial cancellations stop after the power b(5)=21, followed by 22, 24, 25, 26, 27, ...

Examples

			GF = 1/((1-x^2)(1-x^3)(1-x^5)(1-x^7)(1-x^11)...) = 1+x^2+x^3+x^4+2*x^5+... (cf. A000607)
=> a(0)=1, b(0)=0, GF - 1 = x^2 + ....
=> a(1)=1, b(1)=2, GF - 1 - x^2/(1-x) = x^5 + ...
=> a(2)=1, b(2)=5, GF - 1 - x^2/(1-x) - x^5/(1-x)(1-x^2) = x^10 + ...
=> a(3)=1, b(3)=10, GF - ... - x^10/(1-x)(1-x^2)(1-x^3) = x^17 + ...
=> a(4)=1, b(4)=17, GF - ... - x^17/(1-x)(1-x^2)(1-x^3)(1-x^4) = -x^21+...
=> a(5)=-1, b(5)=21, GF - ... + x^21/... etc.
		

Crossrefs

Programs

  • PARI
    p=1/prod(k=1,25,1-x^prime(k),1+O(x^999))/* Note: p1+...+p25 > 1000 */; for(k=0,99, print1(polcoeff(p,c=valuation(p,x)),",");p-=polcoeff(p,c)*x^c/prod(j=1,k,1-x^j,O(x^199)+1))

Extensions

Example section corrected by Vaclav Kotesovec, Sep 12 2019
Showing 1-4 of 4 results.