cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006128 Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0

Views

Author

Keywords

Comments

a(n) = degree of Kac determinant at level n as polynomial in the conformal weight (called h). (Cf. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, p. 533, eq.(98); reference p. 643, Cambridge University Press, (1989).) - Wolfdieter Lang
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that from any part z > 1 one can take an element of amount 1 in one way only. That means z is composed of z unlabeled parts of amount 1, i.e. z = 1 + 1 + ... + 1. E.g., for n=3 to n=2 we have a(3) = 6 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. For the case of z composed by labeled elements, z = 1_1 + 1_2 + ... + 1_z, see A066186. - Thomas Wieder, May 20 2004
Number of times a derivative of any order (not 0 of course) appears when expanding the n-th derivative of 1/f(x). For instance (1/f(x))'' = (2 f'(x)^2-f(x) f''(x)) / f(x)^3 which makes a(2) = 3 (by counting k times the k-th power of a derivative). - Thomas Baruchel, Nov 07 2005
Starting with offset 1, = the partition triangle A008284 * [1, 2, 3, ...]. - Gary W. Adamson, Feb 13 2008
Starting with offset 1 equals A000041: (1, 1, 2, 3, 5, 7, 11, ...) convolved with A000005: (1, 2, 2, 3, 2, 4, ...). - Gary W. Adamson, Jun 16 2009
Apart from initial 0 row sums of triangle A066633, also the Möbius transform is A085410. - Gary W. Adamson, Mar 21 2011
More generally, the total number of parts >= k in all partitions of n equals the sum of k-th largest parts of all partitions of n. In this case k = 1. Apart from initial 0 the first column of A181187. - Omar E. Pol, Feb 14 2012
Row sums of triangle A221530. - Omar E. Pol, Jan 21 2013
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the total number of divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also as follows:
Convolution of A000005 and A000041.
Convolution of A006218 and A002865.
Convolution of A341062 and A000070.
Row sums of triangles A221531, A245095, A339258, A340525, A340529. (End)
Number of ways to choose a part index of an integer partition of n, i.e., partitions of n with a selected position. Selecting a part value instead of index gives A000070. - Gus Wiseman, Apr 19 2021

Examples

			For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
		

References

  • S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A210485.
Column k=1 of A256193.
The version for normal multisets is A001787.
The unordered version is A001792.
The strict case is A015723.
The version for factorizations is A066637.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.

Programs

  • GAP
    List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
  • Haskell
    a006128 = length . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
    a:= n-> coeff(series(g,x,62),x,n):
    seq(a(n), n=0..61);
    # second Maple program:
    a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
    seq(a(n), n=0..61);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
    CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
    a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
    Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
    Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
  • PARI
    f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
    
  • PARI
    a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
    
  • Python
    from sympy import divisor_count, npartitions
    def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
    

Formula

G.f.: Sum_{n>=1} n*x^n / Product_{k=1..n} (1-x^k).
G.f.: Sum_{k>=1} x^k/(1-x^k) / Product_{m>=1} (1-x^m).
a(n) = Sum_{k=1..n} k*A008284(n, k).
a(n) = Sum_{m=1..n} of the number of divisors of m * number of partitions of n-m.
Note that the formula for the above comment is a(n) = Sum_{m=1..n} d(m)*p(n-m) = Sum_{m=1..n} A000005(m)*A000041(n-m), if n >= 1. - Omar E. Pol, Jan 21 2013
Erdős and Lehner show that if u(n) denotes the average largest part in a partition of n, then u(n) ~ constant*sqrt(n)*log n.
a(n) = A066897(n) + A066898(n), n>0. - Reinhard Zumkeller, Mar 09 2012
a(n) = A066186(n) - A196087(n), n >= 1. - Omar E. Pol, Apr 22 2012
a(n) = A194452(n) + A024786(n+1). - Omar E. Pol, May 19 2012
a(n) = A000203(n) + A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{m=1..p(n)} A194446(m) = Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1. - Omar E. Pol, May 12 2013
a(n) = A198381(n) + A026905(n), n >= 1. - Omar E. Pol, Aug 10 2013
a(n) = O(sqrt(n)*log(n)*p(n)), where p(n) is the partition function A000041(n). - Peter Bala, Dec 23 2013
a(n) = Sum_{m=1..n} A006218(m)*A002865(n-m), n >= 1. - Omar E. Pol, Jul 14 2014
From Vaclav Kotesovec, Jun 23 2015: (Start)
Asymptotics (Luthra, 1957): a(n) = p(n) * (C*N^(1/2) + C^2/2) * (log(C*N^(1/2)) + gamma) + (1+C^2)/4 + O(N^(-1/2)*log(N)), where N = n - 1/24, C = sqrt(6)/Pi, gamma is the Euler-Mascheroni constant A001620 and p(n) is the partition function A000041(n).
The formula a(n) = p(n) * (sqrt(3*n/(2*Pi)) * (log(n) + 2*gamma - log(Pi/6)) + O(log(n)^3)) in the abstract of the article by Kessler and Livingston (cited also in the book by Sandor, p. 495) is incorrect!
Right is: a(n) = p(n) * (sqrt(3*n/2)/Pi * (log(n) + 2*gamma - log(Pi^2/6)) + O(log(n)^3))
or a(n) ~ exp(Pi*sqrt(2*n/3)) * (log(6*n/Pi^2) + 2*gamma) / (4*Pi*sqrt(2*n)).
(End)
a(n) = Sum_{m=1..n} A341062(m)*A000070(n-m), n >= 1. - Omar E. Pol, Feb 05 2021 2014

A066186 Sum of all parts of all partitions of n.

Original entry on oeis.org

0, 1, 4, 9, 20, 35, 66, 105, 176, 270, 420, 616, 924, 1313, 1890, 2640, 3696, 5049, 6930, 9310, 12540, 16632, 22044, 28865, 37800, 48950, 63336, 81270, 104104, 132385, 168120, 212102, 267168, 334719, 418540, 520905, 647172, 800569, 988570, 1216215, 1493520
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

Sum of the zeroth moments of all partitions of n.
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that any part z is composed of labeled elements of amount 1, i.e., z = 1_1 + 1_2 + ... + 1_z. Then one can take from z a single element in z different ways. E.g., for n=3 to n=2 we have A066186(3) = 9 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [111], [12] --> [111], [12] --> [2], [3] --> 2, [3] --> 2, [3] --> 2. For the unlabeled case, one can take a single element from z in only one way. Then the number of one-element transitions from the integer partitions of n to the partitions of n-1 is given by A000070. E.g., A000070(3) = 4 and for the transition from n=3 to n=2 one has [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. - Thomas Wieder, May 20 2004
Also sum of all parts of all regions of n (Cf. A206437). - Omar E. Pol, Jan 13 2013
From Omar E. Pol, Jan 19 2021: (Start)
Apart from initial zero this is also as follows:
Convolution of A000203 and A000041.
Convolution of A024916 and A002865.
For n >= 1, a(n) is also the number of cells in a symmetric polycube in which the terraces are the symmetric representation of sigma(k), for k = n..1, (cf. A237593) starting from the base and located at the levels A000041(0)..A000041(n-1) respectively. The polycube looks like a symmetric tower (cf. A221529). A dissection is a three-dimensional spiral whose top view is described in A239660. The growth of the volume of the polycube represents each convolution mentioned above. (End)
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the sum of all divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also the convolution of A340793 and A000070. (End)

Examples

			a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9.
a(4)=20 because A000041(4)=5 and 4*5=20.
		

Crossrefs

Cf. A000041, A093694, A000070, A132825, A001787 (same for ordered partitions), A277029, A000203, A221529, A237593, A239660.
First differences give A138879. - Omar E. Pol, Aug 16 2013

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
  • Mathematica
    PartitionsP[ Range[0, 60] ] * Range[0, 60]
  • PARI
    a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
    
  • Python
    from sympy import npartitions
    def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
  • Sage
    [n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
    

Formula

a(n) = n * A000041(n). - Omar E. Pol, Oct 10 2011
G.f.: x * (d/dx) Product_{k>=1} 1/(1-x^k), i.e., derivative of g.f. for A000041. - Jon Perry, Mar 17 2004 (adjusted to match the offset by Geoffrey Critzer, Nov 29 2014)
Equals A132825 * [1, 2, 3, ...]. - Gary W. Adamson, Sep 02 2007
a(n) = A066967(n) + A066966(n). - Omar E. Pol, Mar 10 2012
a(n) = A207381(n) + A207382(n). - Omar E. Pol, Mar 13 2012
a(n) = A006128(n) + A196087(n). - Omar E. Pol, Apr 22 2012
a(n) = A220909(n)/2. - Omar E. Pol, Jan 13 2013
a(n) = Sum_{k=1..n} A000203(k)*A000041(n-k), n >= 1. - Omar E. Pol, Jan 20 2013
a(n) = Sum_{k=1..n} k*A036043(n,n-k+1). - L. Edson Jeffery, Aug 03 2013
a(n) = Sum_{k=1..n} A024916(k)*A002865(n-k), n >= 1. - Omar E. Pol, Jul 13 2014
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016
a(n) = Sum_{k=1..n} A340793(k)*A000070(n-k), n >= 1. - Omar E. Pol, Feb 04 2021

Extensions

a(0) added by Franklin T. Adams-Watters, Jul 28 2014

A207034 Sum of all parts minus the number of parts of the n-th partition in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 9, 6, 7, 7, 8, 7, 8, 8, 9, 8, 8, 9, 9, 9, 10, 6, 7, 7, 8, 8, 8, 9, 8, 9, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 10, 11, 7, 8, 8, 9, 8, 9
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2012

Keywords

Comments

a(n) is also the column number in which is located the part of size 1 in the n-th zone of the tail of the last section of the set of partitions of k in colexicographic order, minus the column number in which is located the part of size 1 in the first row of the same tail, when k -> infinity (see example). For the definition of "section" see A135010.

Examples

			Illustration of initial terms, n = 1..15. Consider the last 15 rows of the tail of the last section of the set of partitions in colexicographic order of any integer >= 8. The tail contains at least A000041(8-1) = 15 parts of size 1. a(n) is also the number of dots in the n-th row of the diagram.
----------------------------------
n      Tail                  a(n)
----------------------------------
15        1 . . . . . .       6
14          1 . . . . .       5
13          1 . . . . .       5
12            1 . . . .       4
11          1 . . . . .       5
10            1 . . . .       4
9             1 . . . .       4
8               1 . . .       3
7             1 . . . .       4
6               1 . . .       3
5               1 . . .       3
4                 1 . .       2
3                 1 . .       2
2                   1 .       1
1                     1       0
----------------------------------
Written as a triangle:
0;
1;
2;
2,3;
3,4;
3,4,4,5;
4,5,5,6;
4,5,5,6,6,6,7;
5,6,6,7,6,7,7,8;
5,6,6,7,7,7,8,7,8,8,8,9;
6,7,7,8,7,8,8,9,8,8,9,9,9,10;
6,7,7,8,8,8,9,8,9,9,9,10,8,9,9,10,9,10,10,10,11;
...
Consider a matrix [j X A000041(j)] in which the rows represent the partitions of j in colexicographic order (see A211992). Every part of every partition is located in a cell of the matrix. We can see that a(n) is the number of empty cells in row n for any integer j, if A000041(j) >= n. The number of empty cells in row n equals the sum of all parts minus the number of parts in the n-th partition of j.
Illustration of initial terms. The smallest part of every partition is located in the last column of the matrix.
---------------------------------------------------------
.   j: 1    2       3         4           5             6
n a(n)
---------------------------------------------------------
1  0 | 1  1 1   1 1 1   1 1 1 1   1 1 1 1 1   1 1 1 1 1 1
2  1 |    . 2   . 2 1   . 2 1 1   . 2 1 1 1   . 2 1 1 1 1
3  2 |          . . 3   . . 3 1   . . 3 1 1   . . 3 1 1 1
4  2 |                  . . 2 2   . . 2 2 1   . . 2 2 1 1
5  3 |                  . . . 4   . . . 4 1   . . . 4 1 1
6  3 |                            . . . 3 2   . . . 3 2 1
7  4 |                            . . . . 5   . . . . 5 1
8  3 |                                        . . . 2 2 2
9  4 |                                        . . . . 4 2
10 4 |                                        . . . . 3 3
11 5 |                                        . . . . . 6
...
Illustration of initial terms. In this case the largest part of every partition is located in the first column of the matrix.
---------------------------------------------------------
.   j: 1    2       3         4           5             6
n a(n)
---------------------------------------------------------
1  0 | 1  1 1   1 1 1   1 1 1 1   1 1 1 1 1   1 1 1 1 1 1
2  1 |    2 .   2 1 .   2 1 1 .   2 1 1 1 .   2 1 1 1 1 .
3  2 |          3 . .   3 1 . .   3 1 1 . .   3 1 1 1 . .
4  2 |                  2 2 . .   2 2 1 . .   2 2 1 1 . .
5  3 |                  4 . . .   4 1 . . .   4 1 1 . . .
6  3 |                            3 2 . . .   3 2 1 . . .
7  4 |                            5 . . . .   5 1 . . . .
8  3 |                                        2 2 2 . . .
9  4 |                                        4 2 . . . .
10 4 |                                        3 3 . . . .
11 5 |                                        6 . . . . .
...
		

Crossrefs

Row r has length A187219(r). Partial sums give A207038. Row sums give A207035. Right border gives A001477. Where records occur give A000041 without repetitions.

Formula

a(n) = t(n) - A194548(n), if n >= 2, where t(n) is the n-th element of the following sequence: triangle read by rows in which row n lists n repeated k times, where k = A187219(n).
a(n) = A000120(A194602(n-1)) = A000120(A228354(n)-1).
a(n) = i - A193173(i,n), i >= 1, 1<=n<=A000041(i).

A207035 Sum of all parts minus the total number of parts of the last section of the set of partitions of n.

Original entry on oeis.org

0, 1, 2, 5, 7, 16, 20, 39, 52, 86, 113, 184, 232, 353, 462, 661, 851, 1202, 1526, 2098, 2670, 3565, 4514, 5967, 7473, 9715, 12162, 15583, 19373, 24625, 30410, 38274, 47112, 58725, 71951, 89129, 108599, 133612, 162259, 198346, 239825, 291718, 351269, 425102
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2012

Keywords

Examples

			For n = 7 the last section of the set of partitions of 7 looks like this:
.
.        (. . . . . . 7)
.        (. . . 4 . . 3)
.        (. . . . 5 . 2)
.        (. . 3 . 2 . 2)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.                    (1)
.
The sum of all parts = 7+4+3+5+2+3+2+2+1*11 = 39, on the other hand the total number of parts is 1+2+2+3+1*11 = 19, so a(7) = 39 - 19 = 20. Note that the number of dots in the picture is also equal to a(7) = 6+5+5+4 = 20.
		

Crossrefs

Row sums of triangle A207034. Partial sums give A196087.

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 0]
        elif i<2 then [0, 0]
        elif i>n then b(n, i-1)
        else f:= b(n, i-1); g:= b(n-i, i);
             [f[1]+g[1], f[2]+g[2] +g[1]*(i-1)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq (a(n), n=1..50);  # Alois P. Heinz, Feb 20 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, Which[n==0, {1, 0}, i<2, {0, 0}, i>n , b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]*(i-1)}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 13 2015, after Alois P. Heinz *)

Formula

a(n) = A138879(n) - A138137(n) = A138880(n) - A138135(n). - Omar E. Pol, Apr 21 2012
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k)^2 / Product_{j>=2} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021

Extensions

More terms from Alois P. Heinz, Feb 20 2012

A207038 Partial sums of A207034.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 15, 18, 22, 26, 31, 35, 40, 45, 51, 55, 60, 65, 71, 77, 83, 90, 95, 101, 107, 114, 120, 127, 134, 142, 147, 153, 159, 166, 173, 180, 188, 195, 203, 211, 219, 228, 234, 241, 248, 256, 263, 271, 279, 288, 296, 304, 313, 322, 331, 341
Offset: 1

Views

Author

Omar E. Pol, Feb 21 2012

Keywords

Examples

			Written as a triangle:
0;
1;
3;
5,8;
11,15;
18,22,26,31;
35,40,45,51;
55,60,65,71,77,83,90;
95,101,107,114,120,127,134,142;
147,153,159,166,173,180,188,195,203,211,219,228;
234,241,248,256,263,271,279,288,296,304,313,322,331,341;
		

Crossrefs

Row n has length A187219(n). Right border gives A196087.

A161224 Triangular table a(n,m) that counts the occurrences of m in all partitions of 2n in exactly n parts.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 4, 1, 1, 8, 7, 3, 1, 1, 15, 12, 4, 2, 1, 1, 31, 19, 8, 4, 2, 1, 1, 51, 30, 11, 6, 3, 2, 1, 1, 90, 45, 19, 9, 6, 3, 2, 1, 1, 142, 67, 26, 15, 8, 5, 3, 2, 1, 1, 228, 97, 41, 21, 13, 8, 5, 3, 2, 1, 1, 341, 139, 56, 31, 18, 12, 7, 5, 3, 2, 1, 1, 525, 195, 83, 45, 28, 17, 12, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Wouter Meeussen, Jun 06 2009

Keywords

Comments

Row sums are A066186, or n*p(n) with p(n) = A000041 = the partitions of n. The rows reversed converge to 1,1,2,3,5,7,11,15,... or p(n). The count of partitions of 2n in exactly n parts equals p(n).
It appears the row n lists A196087(n) together with the row n of triangle A066633. - Omar E. Pol, Feb 26 2012

Examples

			Table starts:
0;
0, 1;
1, 2, 1;
3, 4, 1, 1;
8, 7, 3, 1, 1;
since the strict partitions of
(2 in 1 part) is {2} with 0 "1" and 1 "2"
(4 in 2 parts) is {2,2}, {3,1} with1 "1", 2 "2" and 1 "3"
(6 in 3 parts) is {2,2,2}, {3,2,1}, {4,1,1} with 3 "1", 4 "2", 1 "3" and 1 "4"
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i=1, `if`(t=n, 1+t*x, 0), expand(add((p->p+coeff(
          p, x, 0)*j*x^i)(b(n-i*j, i-1, t-j)), j=0..min(t, n/i)))))
        end:
    a:= n->(p->seq(coeff(p, x, i), i=1..n+1))(b(2*n$2, n)):
    seq(a(n), n=0..12);  # Alois P. Heinz, Feb 11 2014
  • Mathematica
    <Jean-François Alcover, May 24 2016, after Alois P. Heinz *)

Extensions

Row 0 inserted and tabf changed to tabl by Alois P. Heinz, Feb 11 2014

A182276 Sum of all parts minus the total number of parts of the shell model of partitions with n regions.

Original entry on oeis.org

0, 1, 3, 4, 8, 10, 15, 16, 20, 22, 31, 33, 38, 41, 51, 52, 56, 58, 67, 71, 74, 90, 92, 97, 100, 110, 112, 119, 123, 142, 143, 147, 149, 158, 162, 165, 181, 184, 192, 197, 201, 228, 230, 235, 238, 248, 250, 257, 261, 280, 284, 287, 299, 305, 310, 341
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Comments

For the definition of "region of n" see A206437.

Examples

			Written has a triangle:
0,
1,
3,
4,    8;
10,  15;
16,  20, 22, 31;
33,  38, 41, 51;
52,  56, 58, 67, 71, 74, 90;
92,  97,100,110,112,119,123,142;
143,147,149,158,162,165,181,184,192,197,201,228;
230,235,238,248,250,257,261,280,284,287,299,305,310,341;
		

Crossrefs

Row j has length A187219(j). Right border gives A196087.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    reg = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      t = Take[Reverse[First /@ lex[mx]], j - i];
      AppendTo[reg, Total@t - Length@t]
      ];
    Accumulate@reg  (* Robert Price, Jul 25 2020 *)

Formula

a(n) = A182244(n) - A182181(n).
a(A000041(n)) = A196087(n).
Showing 1-7 of 7 results.