A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
Keywords
A002884 Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).
1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0
Comments
Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
The number of boolean operations on n bits, or quantum operations on n qubits, that can be constructed using only CNOT (controlled NOT) gates. - David Radcliffe, Jul 06 2025
Examples
PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
References
- Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
- K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..57 (first 30 terms from T. D. Noe)
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Zong Duo Dai, Solomon W. Golomb, and Guang Gong, Generating all linear orthomorphisms without repetition, Discrete Math. 205 (1999), 47-55.
- P. F. Duvall, Jr. and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
- Nataša Ilievska and Danilo Gligoroski , Error-Detecting Code Using Linear Quasigroups, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.
- Aaron Meyerowitz & N. J. A. Sloane, Correspondence 1979.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Jeffrey Overbey, William Traves, and Jerzy Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29, Iss. 1 (2005), pp. 59-72; author's copy.
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for sequences related to binary matrices.
- Index entries for sequences related to groups.
- Index to divisibility sequences.
Crossrefs
Programs
-
Magma
[1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
-
Maple
# First program A002884:= n-> mul(2^n - 2^i, i=0..n-1); seq(A002884(n), n = 0..12); # Second program A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n); seq(A002884(n), n=0..12);
-
Mathematica
Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *) Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
-
PARI
a(n)=prod(i=2,n,2^i-1)<
Charles R Greathouse IV, Jan 13 2012 -
SageMath
[product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023
Formula
a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = Product_{k=1..n} A006516(k). - Amiram Eldar, Jul 06 2025
A028365 Order of general affine group over GF(2), AGL(n,2).
1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800
Offset: 0
Comments
For n > 0, a(n) = v(n+1)/v(n), where v = A203305 is the Vandermonde determinant of the first n of the numbers -2^j - 1; see the Mathematica section. - Clark Kimberling, Jan 01 2012
References
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..57
- Abdalla G. M. Ahmed, Matt Pharr, Victor Ostromoukhov, and Hui Huang, SZ Sequences: Binary-Based (0, 2^q)-Sequences, arXiv:2505.20434 [cs.GR], 2025. See p. 7.
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- Putnam Competition 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
Programs
-
Magma
[1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 31 2023
-
Maple
A028365 := n->2^n*product(2^n-2^'i','i'=0..n-1); # version 1 A028365 := n->product(2^'j'-1,'j'=1..n)*2^binomial(n+1,2); # version 2
-
Mathematica
RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n,20}] (* Harvey P. Dale, Aug 03 2011 *) (* Next, the connection with Vandermonde determinants *) f[j_]:= 2^j - 1; z = 15; v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] Table[v[n], {n,z}] (* A203303 *) Table[v[n+1]/v[n], {n,z}] (* A028365 *) Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}] (* A171499 *) (* Clark Kimberling, Jan 01 2011 *) Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n], {n,0,20}] (* G. C. Greubel, Aug 31 2023 *)
-
PARI
a(n)=if(n<0,0,prod(k=1,n,2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */
-
SageMath
[product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # G. C. Greubel, Aug 31 2023
Formula
a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam]. - Max Alekseyev, May 18 2007
a(n) = 2*A203305(n), n > 0. - Clark Kimberling, Jan 01 2012
From Max Alekseyev, Jun 09 2015: (Start)
a(n) = 2^n * A002884(n).
a(n) = 2^n * n! * A053601(n). (End)
From G. C. Greubel, Aug 31 2023: (Start)
a(n) = Product_{j=0..n-1} (2^(n+1) - 2^(j+1)).
a(n) = (-1)^n * 2^binomial(n+1,2) * QPochhammer(2,2,n). (End)
A171499 a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 3, a(1) = 14.
3, 14, 60, 248, 1008, 4064, 16320, 65408, 261888, 1048064, 4193280, 16775168, 67104768, 268427264, 1073725440, 4294934528, 17179803648, 68719345664, 274877644800, 1099511103488, 4398045462528, 17592183947264, 70368739983360
Offset: 0
Comments
Binomial transform of A171498; second binomial transform of A171497; third binomial transform of A010703.
Related to sequences A001969 and A000069, sum of each group with exponent 1. - Eric Desbiaux, Jul 24 2013
a(n) in base 2 is n+2 1s followed by n 0s. - Hussam al-Homsi, Oct 12 2021
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Programs
-
Magma
[4*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
-
Mathematica
(* This program shows how A171499 arises from the Vandermonde determinant of (1,2,4,...,2^(n-1)). *) f[j_]:= 2^j - 1; z = 15; v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] d[n_]:= Product[(i-1)!, {i,n}] Table[v[n], {n,z}] (* A203303 *) Table[v[n+1]/v[n], {n,z}] (* A002884 *) Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}] (* A171499 *) (* Clark Kimberling, Jan 02 2011 *) LinearRecurrence[{6,-8},{3,14},30] (* Harvey P. Dale, Sep 05 2021 *)
-
PARI
{m=23; v=concat([3, 14], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
-
SageMath
[4^(n+1) -2^n for n in range(31)] # G. C. Greubel, Aug 31 2023
Formula
a(n) = 4*4^n - 2^n = 2^n * (2^(n+2) - 1).
G.f.: (3-4*x)/((1-2*x)*(1-4*x)).
a(n) = 4*a(n-1) + 2^n for n > 0. - Vincenzo Librandi, Jul 18 2011
a(n) = A171476(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: 4*exp(4*x) - exp(2*x). - G. C. Greubel, Aug 31 2023
A335010 a(n) = Product_{k=1..n} (2^k - 1)^k.
1, 9, 3087, 156279375, 4474145825060625, 279739266376566114746420625, 149066302192479440045478394157489352699375, 2665022756273454714861436593121414601862237540654765380859375
Offset: 1
Keywords
Programs
-
Mathematica
Table[Product[(2^k - 1)^k, {k, 1, n}], {n, 1, 10}]
-
PARI
a(n) = prod(k=1, n, (2^k-1)^k); \\ Michel Marcus, May 19 2020
Formula
a(n) ~ c * 2^(n*(n+1)*(2*n+1)/6), where c = A335011 = Product_{k>=1} (1 - 1/2^k)^k.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions