cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A005418 Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, 2080, 4160, 8256, 16512, 32896, 65792, 131328, 262656, 524800, 1049600, 2098176, 4196352, 8390656, 16781312, 33558528, 67117056, 134225920, 268451840, 536887296, 1073774592, 2147516416, 4295032832
Offset: 1

Views

Author

Keywords

Comments

Equivalently, walks on triangle, visiting n+2 vertices, so length n+1, n "corners"; the symmetry group is S3, reversing a walk does not count as different. Walks are not self-avoiding. - Colin Mallows
Slavik V. Jablan observes that this is also the number of rational knots and links with n+2 crossings (cf. A018240). See reference. [Corrected by Andrey Zabolotskiy, Jun 18 2020]
Number of bit strings of length (n-1), not counting strings which are the end-for-end reversal or the 0-for-1 reversal of each other as different. - Carl Witty (cwitty(AT)newtonlabs.com), Oct 27 2001
The formula given in page 1095 of the Balasubramanian reference can be used to derive this sequence. - Parthasarathy Nambi, May 14 2007
Also number of compositions of n up to direction, where a composition is considered equivalent to its reversal, see example. - Franklin T. Adams-Watters, Oct 24 2009
Number of normally non-isomorphic realizations of the associahedron of type I starting with dimension 2 in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of fibonacenes with n+2 hexagons. See the Balaban and the Dobrynin references. - Emeric Deutsch, Apr 21 2013
From the point of view of binary grids, it is a (1,n)-rectangular grid. A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11. - Yosu Yurramendi, May 19 2013
Number of n-vertex difference graphs (bipartite 2K_2-free graphs) [Peled & Sun, Thm. 9]. - Falk Hüffner, Jan 10 2016
The offset should be 0, since the first row of A034851 is row 0. The name would then be: "Number of n bead...". - Daniel Forgues, Jul 26 2018
a(n) is the number of non-isomorphic generalized rigid ladders with n cells. A generalized rigid ladder with n cells is a graph with vertex set is the union of {u_0, u_1, ..., u_n} and {v_0, v_1, ..., v_n}, and for every 0 <= i <= n-1, the edges are of the form {u_i,u_i+1}, {v_i, v_i+1}, {u_i,v_i} and either {u_i,v_i+1} or {u_i+1,v_i}. - Christian Barrientos, Jul 29 2018
Also number of non-isomorphic stairs with n+1 cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. - Christian Barrientos and Sarah Minion, Jul 29 2018
From Robert A. Russell, Oct 28 2018: (Start)
There are two different unoriented row colorings using two colors that give us very similar results here, a difference of one in the offset. In an unoriented row, chiral pairs are counted as one.
a(n) is the number of color patterns (set partitions) of an unoriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if the colors are permutable.
a(n+1) is the number of ways to color an unoriented row of length n using two noninterchangeable colors (one need not use both colors).
See the examples below of these two different colorings. (End)
Also arises from the enumeration of types of based polyhedra with exactly two triangular faces [Rademacher]. - N. J. A. Sloane, Apr 24 2020
a(n) is the number of (unlabeled) 2-paths with n+4 vertices. (A 2-path with order n at least 4 can be constructed from a 3-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to an existing 2-clique containing an existing 2-leaf.) - Allan Bickle, Apr 05 2022
a(n) is the number of caterpillars with a perfect matching and order 2n+2. - Christian Barrientos, Sep 12 2023
a(n) is also the number of distinct planar embeddings of the (n+2)-centipede graph (up to at least n=8 and likely for all larger n). - Eric W. Weisstein, May 21 2024
a(n) is also the number of distinct planar embeddings of the 2 X (n+2) grid graph i.e., the (n+2)-ladder graph. - Eric W. Weisstein, May 21 2024
Dimension of the homogeneous component of degree n of the free Jordan algebra on two generators (or, in this case, the free special Jordan algebra on two generators). It follows from (Shirshov 1956, Cohn 1959). - Vladimir Dotsenko, Mar 29 2025

Examples

			a(5) = 10 because there are 16 compositions of 5 (shown as <vectors>) but only 10 equivalence classes (shown as {sets}): {<5>}, {<4,1>,<1,4>}, {<3,2>,<2,3>}, {<3,1,1>,<1,1,3>}, {<1,3,1>},{<2,2,1>,<1,2,2>}, {<2,1,2>}, {<2,1,1,1>,<1,1,1,2>}, {<1,2,1,1>,<1,1,2,1>}, {<1,1,1,1,1>}. - _Geoffrey Critzer_, Nov 02 2012
G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 36*x^7 + 72*x^8 + ... - _Michael Somos_, Jun 24 2018
From _Robert A. Russell_, Oct 28 2018: (Start)
For a(5)=10, the 4 achiral patterns (set partitions) are AAAAA, AABAA, ABABA, and ABBBA. The 6 chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The colors are permutable.
For n=4 and a(n+1)=10, the 4 achiral colorings are AAAA, ABBA, BAAB, and BBBB. The 6 achiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. The colors are not permutable. (End)
		

References

  • K. Balasubramanian, "Combinatorial Enumeration of Chemical Isomers", Indian J. Chem., (1978) vol. 16B, pp. 1094-1096. See page 1095.
  • Wayne M. Dymacek, Steinhaus graphs. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 399--412, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561065 (81f:05120)
  • Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
  • Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 46 (first publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
  • C. A. Pickover, Keys to Infinity, Wiley 1995, p. 75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A320750 (set partitions).
Cf. A131577 (oriented), A122746(n-3) (chiral), A016116 (achiral), for set partitions with up to two subsets.
Column 2 of A277504, offset by one (colors not permutable).
Cf. A000079 (oriented), A122746(n-2) (chiral), and A060546 (achiral), for a(n+1).

Programs

  • Haskell
    a005418 n = sum $ a034851_row (n - 1) -- Reinhard Zumkeller, Jan 14 2012
    
  • Maple
    A005418 := n->2^(n-2)+2^(floor(n/2)-1): seq(A005418(n), n=1..34);
  • Mathematica
    LinearRecurrence[{2,2,-4}, {1,2,3}, 40] (* or *) Table[2^(n-2)+2^(Floor[n/2]-1), {n,40}] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    A005418(n)= 2^(n-2) + 2^(n\2-1); \\ Joerg Arndt, Sep 16 2013
    
  • Python
    def A005418(n): return 1 if n == 1 else 2**((m:= n//2)-1)*(2**(n-m-1)+1) # Chai Wah Wu, Feb 03 2022

Formula

a(n) = 2^(n-2) + 2^(floor(n/2) - 1).
G.f.: -x*(-1 + 3*x^2) / ( (2*x - 1)*(2*x^2 - 1) ). - Simon Plouffe in his 1992 dissertation
G.f.: x*(1+2*x)*(1-3*x^2)/((1-4*x^2)*(1-2*x^2)), not reduced. - Wolfdieter Lang, May 08 2001
a(n) = 6*a(n - 2) - 8*a(n - 4). a(2*n) = A063376(n - 1) = 2*a(2*n - 1); a(2*n + 1) = A007582(n). - Henry Bottomley, Jul 14 2001
a(n+2) = 2*a(n+1) - A077957(n) with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Oct 24 2008
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Jaume Oliver Lafont, Dec 05 2008
Union of A007582 and A161168. Union of A007582 and A063376. - Jaroslav Krizek, Aug 14 2009
G.f.: G(0); G(k) = 1 + 2*x/(1 - x*(1+2^(k+1))/(x*(1+2^(k+1)) + (1+2^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2011
a(2*n) = 2*a(2*n-1) and a(2*n+1) = a(2*n) + 4^(n-1) with a(1) = 1. - Johannes W. Meijer, Aug 26 2013
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A131577(n) + A016116(n)) / 2 = A131577(n) - A122746(n-3) = A122746(n-3) + A016116(n), for set partitions with up to two subsets.
a(n+1) = (A000079(n) + A060546(n)) / 2 = A000079(n) - A122746(n-2) = A122746(n-2) + A060546(n), for two colors that do not permute.
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=2 is the maximum number of colors, S2(n,k) is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n+1) = (k^n + k^ceiling(n/2)) / 2, where k=2 is number of colors we can use. (End)
E.g.f.: (cosh(2*x) + 2*cosh(sqrt(2)*x) + sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 3)/4. - Stefano Spezia, Jun 01 2022

A225826 Number of binary pattern classes in the (2,n)-rectangular grid: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 3, 7, 24, 76, 288, 1072, 4224, 16576, 66048, 262912, 1050624, 4197376, 16785408, 67121152, 268468224, 1073790976, 4295098368, 17180065792, 68720001024, 274878693376, 1099513724928, 4398049656832, 17592194433024, 70368756760576
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

Cf. A005418 = Number of binary pattern classes in the (1,n)-rectangular grid, A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11, A132390 is the sequence when the 90-degree rotation for pattern equivalence is allowed. So, only a(2) is different (communicated by Jon E. Schoenfield). See A054247 for (n,n)-grids.
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    [2^(n-3)*(2^(n+1)-(-1)^n+7): n in [0..25]]; // Vincenzo Librandi, Sep 03 2013
  • Mathematica
    LinearRecurrence[{4, 4, -16}, {1, 3, 7}, 30] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - x - 9 x^2) / ((1 - 2 x) (1 + 2 x) (1 - 4 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 03 2013 *)

Formula

a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) with n>2, a(0)=1, a(1)=3, a(2)=7 (communicated by Jon E. Schoenfield).
a(n) = 2^(n-3)*(2^(n+1) - (-1)^n + 7).
G.f.: (1-x-9*x^2)/((1-2*x)*(1+2*x)*(1-4*x)).

A225910 Square array read by antidiagonals: a(m,n) is the number of binary pattern classes in the (m,n)-rectangular grid, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 7, 6, 1, 1, 10, 24, 24, 10, 1, 1, 20, 76, 168, 76, 20, 1, 1, 36, 288, 1120, 1120, 288, 36, 1, 1, 72, 1072, 8640, 16576, 8640, 1072, 72, 1, 1, 136, 4224, 66816, 263680, 263680, 66816, 4224, 136, 1, 1, 272, 16576, 529920, 4197376, 8407040, 4197376, 529920, 16576, 272, 1
Offset: 0

Views

Author

Yosu Yurramendi, May 20 2013

Keywords

Comments

In the square table A000012, A005418, and A225826 to A225834 are the first 11 rows (see example).
In the square table, m odd (see formula). The order of the recurrence equations is 4. Let it be (a1(m),a2(m),a3(m),a4(m)) the characterizing 4-plet of a(m). The sequence a1(m) belongs to A028403 (2^m+2^((m+1)/2)), -a2(m) to A147538 (2^m*(2^((m+1)/2)-1)) and a4(m) to A013824 (2^(2m)*2^((m+1)/2)). -a3(m) sequence formula is 2^m*(2^m+2^((m+1)/2)).
All the coefficients of x in generating functions from A225826 to A225834 belong to A113979.

Examples

			Array begins:
  1   1      1         1            1               1                  1 ...
  1   2      3         6           10              20                 36 ...
  1   3      7        24           76             288               1072 ...
  1   6     24       168         1120            8640              66816 ...
  1  10     76      1120        16576          263680            4197376 ...
  1  20    288      8640       263680         8407040          268517376 ...
  1  36   1072     66816      4197376       268517376        17180065792 ...
  1  72   4224    529920     67133440      8590786560      1099516870656 ...
  1 136  16576   4212736   1073790976    274882625536     70368756760576 ...
  1 272  66048  33632256  17180262400   8796137062400   4503599962914816 ...
  1 528 262912 268713984 274878693376 281475261923328 288230376957018112 ...
  ...
		

Crossrefs

Formula

m even and n even:
a(m,n) = 2^(m*n/2-2)*(2^(m*n/2) + 3);
m even and n odd:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(m/2-1) + 1);
m odd and n even:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(n/2-1) + 1);
m odd and n odd:
a(m,n) = 2^((m*n-1)/2-1)*(2^((m*n-1)/2) + 2^((m-1)/2) + 2^((n-1)/2) + 1).
m even:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
m odd:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) - 2^(((m+1)/2)*n-3)*(2^((m-1)/2)-1) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
Only a(1,n) and a(2,n) (A005418 and A225826) sequences are needed to define the others.

A228169 Irregular triangle read by rows: T(n,k) is the number of binary pattern classes in the (10,n)-rectangular grid with k '1's and (10n-k) '0's: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 1, 5, 25, 60, 110, 126, 110, 60, 25, 5, 1, 1, 5, 55, 285, 1245, 3876, 9780, 19380, 31650, 41990, 46378, 41990, 31650, 19380, 9780, 3876, 1245, 285, 55, 5, 1, 1, 10, 130, 1070, 7080, 36102, 149785, 511260, 1468215, 3584050, 7523956, 13672690, 21646530, 29964990, 36386895, 38808456, 36386895, 29964990
Offset: 0

Views

Author

Keywords

Comments

The length of row n is 10*n+1.
Sum of rows (see example) gives A225834.
This triangle is to A225828 as Losanitsch's triangle A034851 is to A005418, triangle A226048 to A225826, triangle A226290 to A225827, triangle A225812 to A225828, triangle A228022 to A225829, and triangle A228165 to A225830, triangle A228166 to A225831, triangle A228167 to A225832, and triangle A228168 to A225833.
Also the number of equivalence classes of ways of placing k 1 X 1 tiles in an n X 10 rectangle under all symmetry operations of the rectangle. - Christopher Hunt Gribble, Mar 01 2014

Examples

			Irregular triangle:
1
1  5  25   60  110   126    110     60      25       5       1
1  5  55  285 1245  3876   9780  19380   31650   41990   46378   41990...
1 10 130 1070 7080 36102 149785 511260 1468215 3584050 7523956 13672690 21646530 29964990 36386895 38808456 36386895 29964990 21646530 ...
		

Crossrefs

Extensions

Definition corrected by María Merino, May 22 2017

A225827 Number of binary pattern classes in the (3,n)-rectangular grid: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 6, 24, 168, 1120, 8640, 66816, 529920, 4212736, 33632256, 268713984, 2148630528, 17184194560, 137456517120, 1099579785216, 8796367749120, 70369826308096, 562954298720256, 4503616874348544, 36028866141093888, 288230651566489600, 2305844111946547200
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11.
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1,6,24,168]; [n le 4 select I[n] else 12*Self(n-1)-24*Self(n-2)-96*Self(n-3)+256*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    LinearRecurrence[{12, -24, -96, 256}, {1, 6, 24, 168}, 20] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - 6 x - 24 x^2 + 120 x^3) / ((1 - 4 x) (1 - 8 x) (1 - 8 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 8*a(n-1) + 8*a(n-2) - 64*a(n-3) - 2^(2n-3) with n>2, with a(0)=1, a(1)=6, a(2)=24.
a(n) = 2^(3n/2-1)*(2^(3n/2-1) + 2^(n/2-1) + 1) if n is even,
a(n) = 2^((3*n-1)/2-1)*(2^((3*n-1)/2) + 2^((n-1)/2) + 3) if n is odd.
G.f.: (1-6*x-24*x^2+120*x^3)/((1-4*x)*(1-8*x)*(1-8*x^2)). [Bruno Berselli, May 17 2013]

Extensions

More terms from Vincenzo Librandi, Sep 04 2013

A225828 Number of binary pattern classes in the (4,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 10, 76, 1120, 16576, 263680, 4197376, 67133440, 1073790976, 17180262400, 274878693376, 4398052802560, 70368756760576, 1125900007505920, 18014398710808576, 288230377762324480, 4611686021648613376, 73786976320608010240, 1180591620768950910976, 18889465931890897715200
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11.
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1, 10, 76]; [n le 3 select I[n] else 16*Self(n-1)+16*Self(n-2)-256*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    Table[2^(2 n - 3) (2^(2 n + 1) - 3 (-1)^n + 9), {n, 0, 20}] (* Bruno Berselli, May 16 2013 *)
    LinearRecurrence[{16, 16, -256}, {1, 10, 76}, 20] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - 6 x - 100 x^2) / ((1 - 4 x) (1 + 4 x) (1 - 16 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 16*a(n-1) + 16*a(n-2) - (16^2)*a(n-3) with n>2, a(0)=1, a(1)=10, a(2)=76.
a(n) = 2^(2n-3)*(2^(2n+1)-3*(-1)^n+9).
G.f.: (1-6*x-100*x^2)/((1-4*x)*(1+4*x)*(1-16*x)). [Bruno Berselli, May 16 2013]

Extensions

More terms from Vincenzo Librandi, Sep 04 2013

A225829 Number of binary pattern classes in the (5,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 20, 288, 8640, 263680, 8407040, 268517376, 8590786560, 274882625536, 8796137062400, 281475261923328, 9007201737768960, 288230393868451840, 9223372185031147520, 295147906296044322816, 9444732974878980833280, 302231454974575793668096, 9671406557490978467348480
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1, 20, 288, 8640]; [n le 4 select I[n] else 40*Self(n-1)-224*Self(n-2)-1280*Self(n-3)+8192*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    LinearRecurrence[{40,-224,-1280,8192}, {1, 20, 288, 8640}, 20] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - 20 x - 288 x^2 + 2880 x^3) / ((1 - 8 x) (1 - 32 x) (1 - 32 x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 32*a(n-1) + 32*a(n-2) - 1024*a(n-3)- 2^(3n - 3)*3 with n>2, a(0)=1, a(1)=20, a(2)=288.
a(n) = 2^(5n/2-1)*(2^(5n/2-1) + 2^(n/2-1) + 1) if n is even,
a(n) = 2^((5n-1)/2-1)*(2^((5n-1)/2) + 2^((n-1)/2) + 5) if n is odd.
G.f.: (1-20*x-288*x^2+2880*x^3)/((1-8*x)*(1-32*x)*(1-32*x^2)). [Bruno Berselli, May 17 2013]

A225830 Number of binary pattern classes in the (6,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 36, 1072, 66816, 4197376, 268517376, 17180065792, 1099516870656, 70368756760576, 4503599962914816, 288230376957018112, 18446744095184388096, 1180591620768950910976, 75557863727288712953856, 4835703278461815233708032, 309485009821433029655003136, 19807040628566295504618520576, 1267650600228235030996237418496
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1,36,1072]; [n le 3 select I[n] else 64*Self(n-1)+64*Self(n-2)-4096*Self(n-3): n in [1..25]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    LinearRecurrence[{64, 64, -4096}, {1, 36, 1072}, 20] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - 28 x - 1296 x^2) / ((1 - 8 x) (1 + 8 x) (1 - 64 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 64*a(n-1) + 64*a(n-2) - (64^2)*a(n-3) with n>2, a(0)=1, a(1)=36, a(2)=1072.
a(n) = 2^(3n-3)*(2^(3n+1)-(2^3-1)*(-1)^n+2^3+5) = 8^(n-1)*(2^(3n+1)-7*(-1)^n+13).
G.f.: (1-28*x-1296*x^2)/((1-8*x)*(1+8*x)*(1-64*x)).

A225831 Number of binary pattern classes in the (7,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 72, 4224, 529920, 67133440, 8590786560, 1099516870656, 140737630961664, 18014399717441536, 2305843036057239552, 295147905471410601984, 37778931868592158801920, 4835703278531084466257920, 618970019643974367030804480, 79228162514282633467030142976, 10141204801826143708548100521984, 1298074214633711554847439528656896, 166153499473114560494025562738655232
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1,72,4224,529920]; [n le 4 select I[n] else 144*Self(n-1)-1920*Self(n-2)-18432*Self(n-3)+262144*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    LinearRecurrence[{144, -1920, -18432, 262144}, {1, 72, 4224, 529920}, 20] (* Bruno Berselli, May 17 2013 *)
    CoefficientList[Series[(1 - 72 x - 4224 x^2 + 78336 x^3) / ((1 - 16 x) (1 - 128 x) (1 - 128 x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = (2^7)*a(n-1) + (2^7)*a(n-2) - ((2^7)^2)*a(n-3) - 2^(4n-3)*7 with n>2, a(0)=1, a(1)=72, a(2)=4224.
a(n) = 2^(7n/2-1)*(2^(7n/2-1) + 2^(n/2-1) + 1) if n is even,
a(n) = 2^((7n-1)/2-1)*(2^((7n-1)/2) + 2^((n-1)/2) + 9) if n is odd.
G.f.: (1-72*x-4224*x^2+78336*x^3)/((1-16*x)*(1-128*x)*(1-128*x^2)). [Bruno Berselli, May 17 2013]

A225832 Number of binary pattern classes in the (8,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 136, 16576, 4212736, 1073790976, 274882625536, 70368756760576, 18014399717441536, 4611686021648613376, 1180591621026648948736, 302231454904481927397376, 77371252455415432018395136, 19807040628566295504618520576
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1,136,16576]; [n le 3 select I[n] else 256*Self(n-1)+256*Self(n-2)-65536*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    CoefficientList[Series[(1 - 120 x - 18496 x^2) / ((1 - 16 x) (1 + 16 x) (1 - 256 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 2^8*a(n-1) + 2^8*a(n-2) - (2^8)^2*a(n-3), with n>2, a(0)=1, a(1)=136, a(2)=16576.
a(n) = 2^(4n-3)*(2^(4n+1)-(2^4-1)*(-1)^n+2^4+5).
G.f.: (1-120*x-18496*x^2)/((1-16*x)*(1+16*x)*(1-256*x)).
Showing 1-10 of 11 results. Next