cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A237270 Triangle read by rows in which row n lists the parts of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 3, 2, 2, 7, 3, 3, 12, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 28, 7, 7, 12, 12, 8, 8, 8, 31, 9, 9, 39, 10, 10, 42, 11, 5, 5, 11, 18, 18, 12, 12, 60, 13, 5, 13, 21, 21, 14, 6, 6, 14, 56, 15, 15, 72, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 12, 18, 91, 19, 19, 30, 30, 20, 8, 8, 20, 90
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2014

Keywords

Comments

T(n,k) is the number of cells in the k-th region of the n-th set of regions in a diagram of the symmetry of sigma(n), see example.
Row n is a palindromic composition of sigma(n).
Row sums give A000203.
Row n has length A237271(n).
In the row 2n-1 of triangle both the first term and the last term are equal to n.
If n is an odd prime then row n is [m, m], where m = (1 + n)/2.
The connection with A196020 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A239660 --> this sequence.
For the boundary segments in an octant see A237591.
For the boundary segments in a quadrant see A237593.
For the boundary segments in the spiral see also A239660.
For the parts in every quadrant of the spiral see A239931, A239932, A239933, A239934.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016
T(n,k) is also the area of the k-th terrace, from left to right, at the n-th level, starting from the top, of the stepped pyramid described in A245092 (see Links section). - Omar E. Pol, Aug 14 2018

Examples

			Illustration of the first 27 terms as regions (or parts) of a spiral constructed with the first 15.5 rows of A239660:
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.             12 _| |                           |
.               |_ _|  _ _ _ _ _ _              |_ _
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_
.      _ _ _| |    9 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |      _ _| |      _ _ _ _          |_  |         | |
.     | |     |  _ _| 12 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |      _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|7   _ _| |     | |     | |
.   | |     | |    4    |_                 _|  _ _|     | |     | |
.   | |     |_|_ _        |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| | 15 _|    _ _|     | |
.   |_|_ _ _        |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _      |                       |      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|28  _| |
.           |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |      _|  _|
.          8  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|
.                 |                               |  _ _|  31
.                 |_ _ _ _ _ _ _ _                | |
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.
.
[For two other drawings of the spiral see the links. - _N. J. A. Sloane_, Nov 16 2020]
If the sequence does not contain negative terms then its terms can be represented in a quadrant. For the construction of the diagram we use the symmetric Dyck paths of A237593 as shown below:
---------------------------------------------------------------
Triangle         Diagram of the symmetry of sigma (n = 1..24)
---------------------------------------------------------------
.              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1;            |_| | | | | | | | | | | | | | | | | | | | | | | |
3;            |_ _|_| | | | | | | | | | | | | | | | | | | | | |
2, 2;         |_ _|  _|_| | | | | | | | | | | | | | | | | | | |
7;            |_ _ _|    _|_| | | | | | | | | | | | | | | | | |
3, 3;         |_ _ _|  _|  _ _|_| | | | | | | | | | | | | | | |
12;           |_ _ _ _|  _| |  _ _|_| | | | | | | | | | | | | |
4, 4;         |_ _ _ _| |_ _|_|    _ _|_| | | | | | | | | | | |
15;           |_ _ _ _ _|  _|     |  _ _ _|_| | | | | | | | | |
5, 3, 5;      |_ _ _ _ _| |      _|_| |  _ _ _|_| | | | | | | |
9, 9;         |_ _ _ _ _ _|  _ _|    _| |    _ _ _|_| | | | | |
6, 6;         |_ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|_| | | |
28;           |_ _ _ _ _ _ _| |_ _|  _|  _ _| | |  _ _ _ _|_| |
7, 7;         |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _|
12, 12;       |_ _ _ _ _ _ _ _| |     |     |  _|_|   |* * * *
8, 8, 8;      |_ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |* * * *
31;           |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|* * * *
9, 9;         |_ _ _ _ _ _ _ _ _| | |_ _ _|      _|* * * * * *
39;           |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|* * * * * * *
10, 10;       |_ _ _ _ _ _ _ _ _ _| | |       |* * * * * * * *
42;           |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|* * * * * * * *
11, 5, 5, 11; |_ _ _ _ _ _ _ _ _ _ _| | |* * * * * * * * * * *
18, 18;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
12, 12;       |_ _ _ _ _ _ _ _ _ _ _ _| |* * * * * * * * * * *
60;           |_ _ _ _ _ _ _ _ _ _ _ _ _|* * * * * * * * * * *
...
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n), the sum of all divisors of all positive integers <= n, hence the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n).
For n = 9 the 9th row of A237593 is [5, 2, 2, 2, 2, 5] and the 8th row of A237593 is [5, 2, 1, 1, 2, 5] therefore between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5], so row 9 is [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the sum of the parts of the symmetric representation of sigma(9) is 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
For n = 24 the 24th row of A237593 is [13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13] and the 23rd row of A237593 is [12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12] therefore between both symmetric Dyck paths there are only one region (or part) of size 60, so row 24 is 60.
The sum of divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = A000203(24) = 60. On the other hand the sum of the parts of the symmetric representation of sigma(24) is 60, equaling the sum of divisors of 24.
Note that the number of *'s in the diagram is 24^2 - A024916(24) = 576 - 491 = A004125(24) = 85.
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem).
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351 :  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of triangle:  [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
More generally, for n >= 1, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n.
For the definition of subparts see A239387 and also A296508, A280851. (End)
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_] := Ceiling[(n + 1)/k - (k + 1)/2] (* from A235791 *)
    path[n_] := Module[{c = Floor[(Sqrt[8n + 1] - 1)/2], h, r, d, rd, k, p = {{0, n}}}, h = Map[T[n, #] - T[n, # + 1] &, Range[c]]; r = Join[h, Reverse[h]]; d = Flatten[Table[{{1, 0}, {0, -1}}, {c}], 1];
    rd = Transpose[{r, d}]; For[k = 1, k <= 2c, k++, p = Join[p, Map[Last[p] + rd[[k, 2]] * # &, Range[rd[[k, 1]]]]]]; p]
    segments[n_] := SplitBy[Map[Min, Drop[Drop[path[n], 1], -1] - path[n - 1]], # == 0 &]
    a237270[n_] := Select[Map[Apply[Plus, #] &, segments[n]], # != 0 &]
    Flatten[Map[a237270, Range[40]]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)

Formula

T(n, k) = (A384149(n, k) + A384149(n, m+1-k))/2, where m = A237271(n) is the row length. (conjectured) - Peter Munn, Jun 01 2025

Extensions

Drawing of the spiral extended by Omar E. Pol, Nov 22 2020

A004125 Sum of remainders of n mod k, for k = 1, 2, 3, ..., n.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 8, 8, 12, 13, 22, 17, 28, 31, 36, 36, 51, 47, 64, 61, 70, 77, 98, 85, 103, 112, 125, 124, 151, 138, 167, 167, 184, 197, 218, 198, 233, 248, 269, 258, 297, 284, 325, 328, 339, 358, 403, 374, 414, 420, 449, 454, 505, 492, 529, 520, 553, 578, 635, 586, 645, 672
Offset: 1

Views

Author

Keywords

Comments

Row sums of A051778, A048158. Antidiagonal sums of A051127. - L. Edson Jeffery, Mar 03 2012
Let u_m(n) = Sum_{k=1..n} (n^m mod k^m) with m integer. As n-->+oo, u_m(n) ~ (n^(m+1))*(1-(1/(m+1))*Zeta(1+1/m)). Proof: using Riemann sums, we have u_m(n) ~ (n^(m+1))*int(((1/x)[nonascii character here])*(1-floor(x^m)/(x^m)),x=1..+oo) and the result follows. - Yalcin Aktar, Jul 30 2008 [x is the real variable of integration. The nonascii character (which was illegible in the original message) is probably some form of multiplication sign. I suggest that we leave it the way it is for now. - N. J. A. Sloane, Dec 07 2014]
Also the alternating row sums of A236112. - Omar E. Pol, Jan 26 2014
If n is prime then a(n) = a(n-1) + n - 2. - Omar E. Pol, Mar 19 2014
If n is a power of 2 greater than 1, then a(n) = a(n-1). - David Morales Marciel, Oct 21 2015
It appears that if n is an even perfect number, then a(n) = a(n-1) - 1. - Omar E. Pol, Oct 21 2015
Partial sums of A235796. - Omar E. Pol, Jun 26 2016
Aside from a(n) = a(n-1) for n = 2^m, the only values appearing more than once among the first 6*10^8 terms are those at n = 38184 +- 1, 458010 +- 1, 776112 +- 1, 65675408 +- 1, and 113393280 +- 2. - Trevor Cappallo, Jun 07 2021
The off-by-1 terms in the comment above are the terms of A068077. Proof: If a(n-1) = a(n+1), then (n-1)^2 - Sum_{k=1..n-1} sigma(k) = (n+1)^2 - Sum_{k=1..n+1} sigma(k) via the formula; rearranging terms gives sigma(n)+sigma(n+1)=4n. - Lewis Chen, Sep 24 2021

Examples

			a(5) = 4. The remainder when 5 is divided by 2,3,4 respectively is 1,2,1 and their sum = 4.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290, A006218, A023196, A048158, A050482, A051778, A120444 (first differences).

Programs

  • GAP
    List([1..70],n->n^2-Sum([1..n],k->Sigma(k))); # Muniru A Asiru, Mar 28 2018
    
  • Haskell
    a004125 n = sum $ map (mod n) [1..n]
    -- Reinhard Zumkeller, Jan 28 2011
    
  • Magma
    [&+[n mod r: r in [1..n]]: n in [1..70]]; // Bruno Berselli, Jul 06 2014
    
  • Maple
    A004125 := n -> add( modp(n,k), k=2..n); /* much faster and unambiguous; "a mod b" may be mods(a,b) */ # M. F. Hasler, Nov 22 2007
  • Mathematica
    Table[Sum[Mod[n,k],{k,2,n-1}],{n,70}] (* Harvey P. Dale, Nov 23 2011 *)
    Accumulate[Table[2n-1-DivisorSigma[1,n],{n,70}]] (* Harvey P. Dale, Jul 11 2014 *)
  • PARI
    A004125(n)=sum(k=2,n,n%k) \\ M. F. Hasler, Nov 22 2007
    
  • Python
    def a(n): return sum(n%k for k in range(1, n))
    print([a(n) for n in range(1, 63)]) # Michael S. Branicky, Jun 08 2021
    
  • Python
    from math import isqrt
    def A004125(n): return n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 21 2023
    
  • SageMath
    def a(n): return sum(n.mod(k) for k in (1..n))
    print([a(n) for n in (1..62)])  # Peter Luschny, May 12 2025

Formula

a(n) = n^2 - Sum_{k=1..n} sigma(k) = A000290(n) - A024916(n), hence asymptotically a(n) = n^2*(1-Pi^2/12) + O(n*log(n)^(2/3)). - Benoit Cloitre, Apr 28 2002. Asymptotics corrected/improved by Charles R Greathouse IV, Feb 22 2015
a(n) = A008805(n-3) + A049798(n-1), for n > 2. - Carl Najafi, Jan 31 2013
a(n) = A000217(n-1) - A153485(n). - Omar E. Pol, Jan 28 2014
G.f.: x^2/(1-x)^3 - (1-x)^(-1) * Sum_{k>=1} k*x^(2*k)/(1-x^k). - Robert Israel, Aug 13 2015
a(n) = Sum_{i=1..n} (n mod i). - Wesley Ivan Hurt, Sep 15 2017
From Ridouane Oudra, May 12 2025: (Start)
a(n) = A067439(n) + A072514(n).
a(n) = Sum_{d|n} d*A067439(n/d).
a(p) = A067439(p), for p prime.
a(p^k) = A072514(p^(k+1))/p, for p prime and k >= 0. (End)
a(n) = A111490(n) - n. - Peter Luschny, May 12 2025

Extensions

Edited by M. F. Hasler, Apr 18 2015

A294898 Deficiency minus binary weight: a(n) = A033879(n) - A000120(n) = A005187(n) - A000203(n).

Original entry on oeis.org

0, 0, 0, 0, 2, -2, 3, 0, 3, 0, 7, -6, 9, 1, 2, 0, 14, -5, 15, -4, 7, 5, 18, -14, 16, 7, 10, -3, 24, -16, 25, 0, 16, 12, 19, -21, 33, 13, 18, -12, 37, -15, 38, 1, 8, 16, 41, -30, 38, 4, 26, 3, 48, -16, 33, -11, 30, 22, 53, -52, 55, 23, 16, 0, 44, -14, 63, 8, 39, -7, 66, -53, 69, 31, 22, 9, 54, -16, 73, -28, 38, 35, 78, -59, 58
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2017

Keywords

Comments

"Least deficient numbers" or "almost perfect numbers" are those k for which A033879(k) = 1, or equally, for which a(k) = -A048881(k-1). The only known solutions are powers of 2 (A000079), all present also in A295296. See also A235796 and A378988. - Antti Karttunen, Dec 16 2024

Crossrefs

Cf. A000120, A000203, A001065, A005187, A011371, A013661, A033879, A048881, A235796, A294896, A294899, A297114 (Möbius transform), A317844 (difference from a(n)), A326133, A326138, A324348 (a(n) applied to Doudna sequence), A379008 (a(n) applied to prime shift array), A378988.
Cf. A295296 (positions of zeros), A295297 (parity of a(n)).

Programs

Formula

a(n) = A005187(n) - A000203(n).
a(n) = A011371(n) - A001065(n).
a(n) = A033879(n) - A000120(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - zeta(2)/2 = 0.177532... . - Amiram Eldar, Feb 22 2024

Extensions

Name edited by Antti Karttunen, Dec 16 2024

A294015 Sum of the even divisors of 2n, minus the (n-1)st odd number.

Original entry on oeis.org

1, 3, 3, 7, 3, 13, 3, 15, 9, 17, 3, 33, 3, 21, 19, 31, 3, 43, 3, 45, 23, 29, 3, 73, 13, 33, 27, 57, 3, 85, 3, 63, 31, 41, 27, 111, 3, 45, 35, 101, 3, 109, 3, 81, 67, 53, 3, 153, 17, 87, 43, 93, 3, 133, 35, 129, 47, 65, 3, 217, 3, 69, 83, 127, 39, 157, 3, 117, 55, 149, 3, 247, 3, 81, 99, 129, 39, 181, 3, 213, 81, 89, 3, 281
Offset: 1

Views

Author

Omar E. Pol, Oct 28 2017

Keywords

Comments

a(n) = 3 if and only if n is prime.

Crossrefs

Partial sums give A294016.

Programs

  • Mathematica
    a[n_] := 2*(DivisorSigma[1, n] - n) + 1; Array[a, 100] (* Amiram Eldar, Mar 30 2024 *)
  • PARI
    a(n) = 2*sigma(n) - 2*n + 1; \\ Michel Marcus, Oct 29 2017

Formula

a(n) = A074400(n) - A005408(n-1) = 2*A000203(n) - 2*n + 1 = A000203(n) - A235796(n).
Sum_{k=1..n} a(k) = (Pi^2/6 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Mar 30 2024
a(n) = 2*A001065(n) + 1 = A091818(n) + 1. - Omar E. Pol, Dec 01 2024

A378988 a(n) = 2*n XOR 1+sigma(n), where XOR is bitwise-xor, A003987.

Original entry on oeis.org

0, 0, 3, 0, 13, 1, 7, 0, 28, 7, 27, 5, 21, 5, 7, 0, 49, 12, 51, 3, 11, 9, 55, 13, 18, 31, 31, 1, 37, 117, 31, 0, 115, 115, 119, 20, 109, 113, 119, 11, 121, 53, 123, 13, 21, 21, 111, 29, 88, 58, 47, 11, 93, 21, 39, 9, 35, 47, 75, 209, 69, 29, 23, 0, 215, 21, 195, 247, 235, 29, 199, 84, 217, 231, 235, 21, 251, 53, 207
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Comments

For any hypothetical quasiperfect number q (for which sigma(q) = 2*q+1, see A336701), a(q) would be equal to 2*q XOR 2*q+2 = 2*(q XOR q+1) = 2*A038712(1+q) = A100892(1+q).
See also A000079 and A235796 concerning the "almost perfect" or "least deficient" numbers that give positions of 0's here.

Crossrefs

Cf. A000079 (conjectured to give positions of all 0's), A000396 (positions of 1's), A000203, A003987, A028982 (positions of even terms), A028983 (of odd terms), A038712, A100892, A318467, A336701, A378998, A379009 [= a(n^2)].

Programs

  • Mathematica
    Array[BitXor[2*#, DivisorSigma[1, #] + 1] &, 100] (* Paolo Xausa, Dec 16 2024 *)
  • PARI
    A378988(n) = bitxor(n+n,1+sigma(n));

Formula

For all n in A028983, a(n) = 2n+1 XOR sigma(n) = 1+A318467(n).

A237046 Numbers n such that sigma(n) < 2n-1.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2014

Keywords

Comments

Numbers n such that A235796(n) > 0.
Complement of A103288.
If the only least-deficient numbers are the powers of 2 (which is an open problem) then the union of A000079 and A023196 and this sequence gives A000027 (see also A103288).

Examples

			10 is in the sequence because the sum of divisors of 10 is less than (2*10 - 1). The sum of divisors of 10 is 1 + 2 + 5 + 10 = 18 and 2*10 - 1 = 19.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[120],DivisorSigma[1,#]<2#-1&] (* Harvey P. Dale, Sep 12 2018 *)
  • PARI
    s=[]; for(n=1, 200, if(sigma(n)<2*n-1, s=concat(s,n))); s \\ Colin Barker, Feb 20 2014

A237588 Sigma(n) - 2n + 1.

Original entry on oeis.org

0, 0, -1, 0, -3, 1, -5, 0, -4, -1, -9, 5, -11, -3, -5, 0, -15, 4, -17, 3, -9, -7, -21, 13, -18, -9, -13, 1, -27, 13, -29, 0, -17, -13, -21, 20, -35, -15, -21, 11, -39, 13, -41, -3, -11, -19, -45, 29, -40, -6, -29, -5, -51, 13, -37, 9, -33, -25, -57, 49, -59, -27, -21, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2014

Keywords

Comments

Also we can write Sigma(n) - (2n - 1).
a(n) = 2 - n iff n is prime.
a(n) = 1 iff n is a perfect number.
Conjecture: a(n) = 0 iff n is a power of 2.
The problem is not new. In fact, the following comments appeared on page 74 of Guy's book: "If Sigma(n) = 2*n - 1, n has been called almost perfect. Powers of 2 are almost perfect; it is not known if any other numbers are.". - Zhi-Wei Sun, Feb 23 2014

Examples

			-----------------------------------------------
.     The sum of       The positive
n    divisors of n     odd numbers        a(n)
-----------------------------------------------
1          1                1               0
2          3                3               0
3          4                5              -1
4          7                7               0
5          6                9              -3
6         12               11               1
7          8               13              -5
8         15               15               0
9         13               17              -4
10        18               19              -1
...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004.

Crossrefs

Programs

  • Magma
    [1-2*n+SumOfDivisors(n): n in [1..100]]; // Vincenzo Librandi, Feb 25 2014
  • Mathematica
    Table[DivisorSigma[1,n]-2n+1,{n,70}] (* Harvey P. Dale, Nov 15 2014 *)
  • PARI
    vector(100, n, sigma(n)-2*n+1) \\ Colin Barker, Feb 21 2014
    

Formula

a(n) = A000203(n) - A005408(n-1) = 1 - n + A001065(n) = 1 - A033879(n) = 1 + A033880(n) = (-1)*A235796(n).
a(n) = A088580(n) - 2*n. - Omar E. Pol, Mar 23 2014

A239446 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the elements of A004273 interleaved with k zeros, and the first element of column k is in row k*(k+1)/2.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 7, 3, 0, 0, 0, 1, 0, 9, 0, 0, 0, 0, 5, 0, 0, 11, 0, 0, 0, 0, 0, 3, 0, 13, 7, 0, 1, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 9, 5, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 3, 0, 19, 11, 0, 0, 1, 0, 0, 0, 7, 0, 0, 0, 21, 0
Offset: 1

Views

Author

Omar E. Pol, Mar 20 2014

Keywords

Comments

Alternating sum of row n equals A235796(n), i.e., sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A235796(n).
Row n has length A003056(n) hence column k starts in row A000217(k).
Column k starts with k+1 zeros and then lists the odd numbers interleaved with k zeros.
It appears that row n lists all zeros iff n is a power of 2.

Examples

			Triangle begins:
0;
0;
1,  0;
0,  0;
3,  0;
0,  1,  0;
5,  0,  0;
0,  0,  0;
7,  3,  0;
0,  0,  1,  0;
9,  0,  0,  0;
0,  5,  0,  0;
11, 0,  0,  0;
0,  0,  3,  0;
13, 7,  0,  1,  0;
0,  0,  0,  0,  0;
15, 0,  0,  0,  0;
0,  9,  5,  0,  0;
17, 0,  0,  0,  0;
0,  0,  0,  3,  0;
19, 11, 0,  0,  1,  0;
0,  0,  7,  0,  0,  0;
21, 0,  0,  0,  0,  0;
0,  13, 0,  0,  0,  0;
23, 0,  0,  5,  0,  0;
...
For n = 15 the 15th row of triangle is 13, 7, 0, 1, and the alternating sum is 13 - 7 + 0 - 1 = A235796(15) = 5.
		

Crossrefs

A294628 a(n) = 8*(sigma(n) - n + (1/2)).

Original entry on oeis.org

4, 12, 12, 28, 12, 52, 12, 60, 36, 68, 12, 132, 12, 84, 76, 124, 12, 172, 12, 180, 92, 116, 12, 292, 52, 132, 108, 228, 12, 340, 12, 252, 124, 164, 108, 444, 12, 180, 140, 404, 12, 436, 12, 324, 268, 212, 12, 612, 68, 348, 172, 372, 12, 532, 140, 516, 188, 260, 12, 868, 12, 276
Offset: 1

Views

Author

Omar E. Pol, Nov 05 2017

Keywords

Crossrefs

Programs

  • GAP
    List([1..10^5],n->8*(Sigma(n)-n+(1/2))); # Muniru A Asiru, Mar 04 2018
  • Maple
    with(numtheory): seq(sigma(8*n-1)/8, n=1..10^3); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    a[n_] := 8 (DivisorSigma[1, n] - n) + 4; Array[a, 62] (* Robert G. Wilson v, Dec 12 2017 *)

Formula

a(n) = 4*A294015(n).
a(n) = 8*(A001065(n) + (1/2)).
a(n) = 8*(A000203(n) - n + (1/2)).
a(n) = A239050(n) - 4*A235796(n).
a(n) = A017113(n-1) - 8*A235796(n).

A362081 Numbers k achieving record abundance (sigma(k) > 2*k) via a residue-based measure M(k) (see Comments), analogous to superabundant numbers A004394.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 36, 72, 120, 360, 420, 840, 1680, 2520, 4032, 5040, 10080, 25200, 32760, 65520, 98280, 194040, 196560, 388080, 942480, 1801800, 3160080, 3603600, 6320160, 12640320, 24504480, 53721360, 61981920, 73513440, 115315200, 122522400, 189909720, 192099600, 214885440
Offset: 1

Views

Author

Richard Joseph Boland, Apr 08 2023

Keywords

Comments

The residue-based quantifier function, M(k) = (k+1)*(1 - zeta(2)/2) - 1 - ( Sum_{j=1..k} k mod j )/k, measures either abundance (sigma(k) > 2*k), or deficiency (sigma(k) < 2*k), of a positive integer k. It follows from the known facts that Sum_{j=1..k} (sigma(j) + k mod j) = k^2 and that the average order of sigma(k)/k is Pi^2/6 = zeta(2) (see derivation below).
M(k) ~ 0 when sigma(k) ~ 2*k and for sufficiently large k, M(k) is positive when k is an abundant number (A005101) and negative when k is a deficient number (A005100). The terms of this sequence are the abundant k for which M(k) > M(m) for all m < k, analogous to the superabundant numbers A004394, which utilize sigma(k)/k as the measure. However, sigma(k)/k does not give a meaningful measure of deficiency, whereas M(k) does, thus a sensible notion of superdeficient (see A362082).

Examples

			The abundance measure is initially negative, becoming positive for k > 30. Initial measures with factorizations from the Mathematica program:
   1  -0.64493406684822643647   {{1,1}}
   2  -0.46740110027233965471   {{2,1}}
   4  -0.36233516712056609118   {{2,2}}
   6  -0.25726923396879252765   {{2,1},{3,1}}
  12  -0.10873810118013850374   {{2,2},{3,1}}
  24  -0.10334250226949712257   {{2,3},{3,1}}
  30  -0.096478036147509765322  {{2,1},{3,1},{5,1}}
  36   0.068719763307810925260  {{2,2},{3,2}}
  72   0.12657322670640173542   {{2,3},{3,2}}
		

Crossrefs

Programs

  • Mathematica
    Clear[max, Rp, R, seqtable, M];
    max = -1; Rp = 0; seqtable = {};
    Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
      M = N[(k + 1)*(1 - Zeta[2]/2) - 1 - R/k, 20];
      If[M > max, max = M; Print[k, "   ", max, "   ", FactorInteger[k]];
       AppendTo[seqtable, k]];
      Rp = R, {k, 1, 1000000000}];
    Print[seqtable]
  • PARI
    M(n) = (n+1)*(1 - zeta(2)/2) - 1 - sum(k=2, n, n%k)/n;
    lista(nn) = my(m=-oo, list=List()); for (n=1, nn, my(mm = M(n)); if (mm > m, listput(list, n); m = mm);); Vec(list); \\ Michel Marcus, Apr 21 2023

Formula

Derived starting with lemmas 1-3:
1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2.
2) The average order of sigma(k)/k is Pi^2/6 = zeta(2).
3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j).
Then:
Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2.
R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2.
0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k.
Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0.
Showing 1-10 of 14 results. Next