cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002109 Hyperfactorials: Product_{k = 1..n} k^k.

Original entry on oeis.org

1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0

Views

Author

Keywords

Comments

A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 (this sequence) gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego, eq. (6.71.7). - Alan Sokal, Mar 02 2012
a(n) = (-1)^n/det(M_n) where M_n is the n X n matrix m(i,j) = (-1)^i/i^j. - Benoit Cloitre, May 28 2002
a(n) = determinant of the n X n matrix M(n) where m(i,j) = B(n,i,j) and B(n,i,x) denote the Bernstein polynomial: B(n,i,x) = binomial(n,i)*(1-x)^(n-i)*x^i. - Benoit Cloitre, Feb 02 2003
Partial products of A000312. - Reinhard Zumkeller, Jul 07 2012
Number of trailing zeros (A246839) increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms. - Chai Wah Wu, Sep 03 2014
Also the number of minimum distinguishing labelings in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Also shows up in a term in the solution to the generalized version of Raabe's integral. - Jibran Iqbal Shah, Apr 24 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.

Crossrefs

Cf. A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
Cf. A246839 (trailing 0's).
Cf. A261175 (number of digits).

Programs

  • Haskell
    a002109 n = a002109_list !! n
    a002109_list = scanl1 (*) a000312_list  -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    f := proc(n) local k; mul(k^k,k=1..n); end;
    A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1));
    seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
  • Mathematica
    Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
    Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
    Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
  • PARI
    a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • Python
    A002109 = [1]
    for n in range(1, 10):
        A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
    
  • Sage
    a = lambda n: prod(falling_factorial(n,k) for k in (1..n))
    [a(n) for n in (0..10)]  # Peter Luschny, Nov 29 2015

Formula

a(n)*A000178(n-1) = (n!)^n = A036740(n) for n >= 1.
Determinant of n X n matrix m(i, j) = binomial(i*j, i). - Benoit Cloitre, Aug 27 2003
a(n) = exp(zeta'(-1, n + 1) - zeta'(-1)) where zeta(s, z) is the Hurwitz zeta function. - Peter Luschny, Jun 23 2012
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^k*x). - Paul D. Hanna, Oct 02 2013
a(n) = A240993(n) / A000142(n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) ~ A * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A = 1.2824271291006226368753425... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 20 2015
a(n) = Product_{k=1..n} ff(n,k) where ff denotes the falling factorial. - Peter Luschny, Nov 29 2015
log a(n) = (1/2) n^2 log n - (1/4) n^2 + (1/2) n log n + (1/12) log n + log(A) + o(1), where log(A) = A225746 is the logarithm of Glaisher's constant. - Charles R Greathouse IV, Mar 27 2020
From Amiram Eldar, Apr 30 2023: (Start)
Sum_{n>=1} 1/a(n) = A347345.
Sum_{n>=1} (-1)^(n+1)/a(n) = A347352. (End)
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Integral_{x=1..n+1} (x - 1/2 - log(sqrt(2*Pi)) + (n+1-x)*Psi(x)) dx), where Psi(x) is the digamma function.
a(n) = e^(Integral_{x=1..n} (x + 1/2 - log(sqrt(2*Pi)) + log(Gamma(x+1))) dx). (End)

A245334 A factorial-like triangle read by rows: T(0,0) = 1; T(n+1,0) = T(n,0)+1; T(n+1,k+1) = T(n,0)*T(n,k), k=0..n.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 12, 6, 5, 16, 36, 48, 24, 6, 25, 80, 180, 240, 120, 7, 36, 150, 480, 1080, 1440, 720, 8, 49, 252, 1050, 3360, 7560, 10080, 5040, 9, 64, 392, 2016, 8400, 26880, 60480, 80640, 40320, 10, 81, 576, 3528, 18144, 75600, 241920, 544320
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 30 2014

Keywords

Comments

row(0) = {1}; row(n+1) = row(n) multiplied by n and prepended with (n+1);
A111063(n+1) = sum of n-th row;
T(2*n,n) = A002690(n), central terms;
T(n,0) = n + 1;
T(n,1) = A000290(n), n > 0;
T(n,2) = A011379(n-1), n > 1;
T(n,3) = A047927(n), n > 2;
T(n,4) = A192849(n-1), n > 3;
T(n,5) = A000142(5) * A027810(n-5), n > 4;
T(n,6) = A000142(6) * A027818(n-6), n > 5;
T(n,7) = A000142(7) * A056001(n-7), n > 6;
T(n,8) = A000142(8) * A056003(n-8), n > 7;
T(n,9) = A000142(9) * A056114(n-9), n > 8;
T(n,n-10) = 11 * A051431(n-10), n > 9;
T(n,n-9) = 10 * A049398(n-9), n > 8;
T(n,n-8) = 9 * A049389(n-8), n > 7;
T(n,n-7) = 8 * A049388(n-7), n > 6;
T(n,n-6) = 7 * A001730(n), n > 5;
T(n,n-5) = 6 * A001725(n), n > 5;
T(n,n-4) = 5 * A001720(n), n > 4;
T(n,n-3) = 4 * A001715(n), n > 2;
T(n,n-2) = A070960(n), n > 1;
T(n,n-1) = A052849(n), n > 0;
T(n,n) = A000142(n);
T(n,k) = A137948(n,k) * A007318(n,k), 0 <= k <= n.

Examples

			.  0:   1;
.  1:   2,  1;
.  2:   3,  4,   2;
.  3:   4,  9,  12,    6;
.  4:   5, 16,  36,   48,    24;
.  5:   6, 25,  80,  180,   240,   120;
.  6:   7, 36, 150,  480,  1080,  1440,    720;
.  7:   8, 49, 252, 1050,  3360,  7560,  10080,   5040;
.  8:   9, 64, 392, 2016,  8400, 26880,  60480,  80640,  40320;
.  9:  10, 81, 576, 3528, 18144, 75600, 241920, 544320, 725760, 362880.
		

Crossrefs

Programs

  • Haskell
    a245334 n k = a245334_tabl !! n !! k
    a245334_row n = a245334_tabl !! n
    a245334_tabl = iterate (\row@(h:_) -> (h + 1) : map (* h) row) [1]
  • Mathematica
    Table[(n!)/((n - k)!)*(n + 1 - k), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 10 2017 *)

Formula

T(n,k) = n!*(n+1-k)/(n-k)!. - Werner Schulte, Sep 09 2017

A055897 a(n) = n*(n-1)^(n-1).

Original entry on oeis.org

1, 2, 12, 108, 1280, 18750, 326592, 6588344, 150994944, 3874204890, 110000000000, 3423740047332, 115909305827328, 4240251492291542, 166680102383370240, 7006302246093750000, 313594649253062377472, 14890324713954061755186, 747581753430634213933056
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2000

Keywords

Comments

Total number of leaves in all labeled rooted trees with n nodes.
Number of endofunctions of [n] such that no element of [n-1] is fixed. E.g., a(3)=12: 123 -> 331, 332, 333, 311, 312, 313, 231, 232, 233, 211, 212, 213.
Number of functions f: {1, 2, ..., n} --> {1, 2, ..., n} such that f(1) != f(2), f(2) != f(3), ..., f(n-1) != f(n). - Warut Roonguthai, May 06 2006
Determinant of the n X n matrix ((2n, n^2, 0, ..., 0), (1, 2n, n^2, 0, ..., 0), (0, 1, 2n, n^2, 0, ..., 0), ..., (0, ..., 0, 1, 2n)). - Michel Lagneau, May 04 2010
For n > 1: a(n) = A240993(n-1) / A240993(n-2). - Reinhard Zumkeller, Aug 31 2014
Total number of points m such that f^(-1)(m) = {m}, (i.e., the preimage of m is the singleton set {m}) summed over all functions f:[n]->[n]. - Geoffrey Critzer, Jan 20 2022

Crossrefs

Programs

Formula

E.g.f.: x/(1-T), where T=T(x) is Euler's tree function (see A000169).
a(n) = Sum_{k=1..n} A055302(n, k)*k.
a(n) = the n-th term of the (n-1)-th binomial transform of {1, 1, 4, 18, 96, ..., (n-1)*(n-1)!, ...} (cf. A001563). - Paul D. Hanna, Nov 17 2003
a(n) = (n-1)^(n-1) + Sum_{i=2..n} (n-1)^(n-i)*binomial(n-1, i-1)*(i-1) *(i-1)!. - Paul D. Hanna, Nov 17 2003
a(n) = [x^(n-1)] 1/(1 - (n-1)*x)^2. - Paul D. Hanna, Dec 27 2012
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Nov 14 2014

Extensions

Additional comments from Vladeta Jovovic, Mar 31 2001 and Len Smiley, Dec 11 2001

A111063 a(0) = 1; a(n) = (n-1)*a(n-1) + n.

Original entry on oeis.org

1, 1, 3, 9, 31, 129, 651, 3913, 27399, 219201, 1972819, 19728201, 217010223, 2604122689, 33853594971, 473950329609, 7109254944151, 113748079106433, 1933717344809379, 34806912206568841, 661331331924807999, 13226626638496160001, 277759159408419360043
Offset: 0

Views

Author

N. J. A. Sloane, Oct 08 2005

Keywords

Comments

From Frank Ruskey, Nov 24 2009: (Start)
If the initial 1 were deleted, the recurrence relation becomes a(n) = n+1+n*a(n-1) with a(0) = 1. Furthermore, it can then be shown that a(n) is the number of nonempty subsets of binary strings with n 1's and 2 0's that are closed under the operation of replacing the leftmost 01 with 10. Taking the maximal elements under this relation,
a(2) = 9 = |{0011},{0101},{1001},{1010},{1100},{0110}, {0110,1001},{0101,0110},{0011,0110}|.
We also have the e.g.f. (1+x)/(1-x) e^x and the formula a(n) = -1 + 2*n!*sum_{j=0..n} 1/j!. (End)
a(n+1) = sum of n-th row in triangle A245334. - Reinhard Zumkeller, Aug 30 2014 [A-number corrected by N. J. A. Sloane, May 03 2017]
Eigensequence of triangle with (1, 2, 3, ...) as the right and left borders and the rest zeros. - Gary W. Adamson, Aug 01 2016
The following remarks apply to the sequence without the initial term a(0) = 1: For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k. It follows that for each k the sequence a(n) taken modulo k is periodic with period dividing k. For example, modulo 10 the sequence becomes 1, 3, 9, 1, 9, 1, 3, 9, 1, 9, ... with period 5. Cf. A000522. - Peter Bala, Nov 19 2017

References

  • F. Drewes et al., Tight Bounds for Cut-Operations on Deterministic Finite Automata, in Lecture Notes in Computer Science, Volume 9288 2015, Machines, Computations, and Universality, 7th International Conference, MCU 2015, Famagusta, North Cyprus, September 9-11, 2015, Editors: Jerome Durand-Lose, Benedek Nagy, ISBN: 978-3-319-23110-5 (Print) 978-3-319-23111-2 (Online). ["In the On-Line Encyclopedia of Integer Sequences (OEIS) this matches the sequence A111063."]

Crossrefs

Programs

  • Haskell
    a111063 n = a111063_list !! n
    a111063_list = 1 : zipWith (+) [1..] (zipWith (*) [0..] a111063_list)
    -- Reinhard Zumkeller, Aug 30 2014
  • Maple
    a:=proc(n) option remember; if n=0 then RETURN(1); fi; (n-1)*a(n-1)+n; end;
    # Alternatively:
    a := n -> `if`(n=0, 1, 2*exp(1)*GAMMA(n, 1) - 1):
    seq(simplify(a(n)), n=0..22); # Peter Luschny, Nov 21 2017
  • Mathematica
    FoldList[#1*#2 + #2 + 1 &, 1, Range[21]] (* Robert G. Wilson v, Jul 07 2012 *)

Formula

a(n+1) = Sum_{k=0..2*n} C(n,floor(k/2))(n-floor(k/2))!. - Paul Barry, May 04 2007
a(n) = A030297(n)/n, n>0.
a(n) = A007526(n) + A000522(n). - Gary Detlefs, Jun 10 2010
a(n) = 2*floor(e*n!) - 1, n>1. - Gary Detlefs, Jun 10 2010
E.g.f.: exp(x)*(1+x)/(1-x), - N. J. A. Sloane, May 03 2017
a(n) ~ 2*sqrt(2*Pi)*exp(1)*n^n*sqrt(n)/exp(n). - Ilya Gutkovskiy, Aug 02 2016
a(n) = 2*exp(1)*GAMMA(n, 1) - 1 for n>=1. - Peter Luschny, Nov 21 2017
Showing 1-4 of 4 results.