cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A028387 a(n) = n + (n+1)^2.

Original entry on oeis.org

1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379, 419, 461, 505, 551, 599, 649, 701, 755, 811, 869, 929, 991, 1055, 1121, 1189, 1259, 1331, 1405, 1481, 1559, 1639, 1721, 1805, 1891, 1979, 2069, 2161, 2255, 2351, 2449, 2549, 2651
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the least k > a(n) + 1 such that A000217(a(n)) + A000217(k) is a square. - David Wasserman, Jun 30 2005
Values of Fibonacci polynomial n^2 - n - 1 for n = 2, 3, 4, 5, ... - Artur Jasinski, Nov 19 2006
A127701 * [1, 2, 3, ...]. - Gary W. Adamson, Jan 24 2007
Row sums of triangle A135223. - Gary W. Adamson, Nov 23 2007
Equals row sums of triangle A143596. - Gary W. Adamson, Aug 26 2008
a(n-1) gives the number of n X k rectangles on an n X n chessboard (for k = 1, 2, 3, ..., n). - Aaron Dunigan AtLee, Feb 13 2009
sqrt(a(0) + sqrt(a(1) + sqrt(a(2) + sqrt(a(3) + ...)))) = sqrt(1 + sqrt(5 + sqrt(11 + sqrt(19 + ...)))) = 2. - Miklos Kristof, Dec 24 2009
When n + 1 is prime, a(n) gives the number of irreducible representations of any nonabelian group of order (n+1)^3. - Andrew Rupinski, Mar 17 2010
a(n) = A176271(n+1, n+1). - Reinhard Zumkeller, Apr 13 2010
The product of any 4 consecutive integers plus 1 is a square (see A062938); the terms of this sequence are the square roots. - Harvey P. Dale, Oct 19 2011
Or numbers not expressed in the form m + floor(sqrt(m)) with integer m. - Vladimir Shevelev, Apr 09 2012
Left edge of the triangle in A214604: a(n) = A214604(n+1,1). - Reinhard Zumkeller, Jul 25 2012
Another expression involving phi = (1 + sqrt(5))/2 is a(n) = (n + phi)(n + 1 - phi). Therefore the numbers in this sequence, even if they are prime in Z, are not prime in Z[phi]. - Alonso del Arte, Aug 03 2013
a(n-1) = n*(n+1) - 1, n>=0, with a(-1) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 5 for b = 2*n+1. In general D = b^2 - 4ac > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) has prime factors given by A038872. - Richard R. Forberg, Dec 10 2014
A253607(a(n)) = -1. - Reinhard Zumkeller, Jan 05 2015
An example of a quadratic sequence for which the continued square root map (see A257574) produces the number 2. There are infinitely many sequences with this property - another example is A028387. See Popular Computing link. - N. J. A. Sloane, May 03 2015
Left edge of the triangle in A260910: a(n) = A260910(n+2,1). - Reinhard Zumkeller, Aug 04 2015
Numbers m such that 4m+5 is a square. - Bruce J. Nicholson, Jul 19 2017
The numbers represented as 131 in base n: 131_4 = 29, 131_5 = 41, ... . If 'digits' larger than the base are allowed then 131_2 = 11 and 131_1 = 5 also. - Ron Knott, Nov 14 2017
From Klaus Purath, Mar 18 2019: (Start)
Let m be a(n) or a prime factor of a(n). Then, except for 1 and 5, there are, if m is a prime, exactly two squares y^2 such that the difference y^2 - m contains exactly one pair of factors {x,z} such that the following applies: x*z = y^2 - m, x + y = z with
x < y, where {x,y,z} are relatively prime numbers. {x,y,z} are the initial values of a sequence of the Fibonacci type. Thus each a(n) > 5, if it is a prime, and each prime factor p > 5 of an a(n) can be assigned to exactly two sequences of the Fibonacci type. a(0) = 1 belongs to the original Fibonacci sequence and a(1) = 5 to the Lucas sequence.
But also the reverse assignment applies. From any sequence (f(i)) of the Fibonacci type we get from its 3 initial values by f(i)^2 - f(i-1)*f(i+1) with f(i-1) < f(i) a term a(n) or a prime factor p of a(n). This relation is also valid for any i. In this case we get the absolute value |a(n)| or |p|. (End)
a(n-1) = 2*T(n) - 1, for n>=1, with T = A000217, is a proper subsequence of A089270, and the terms are 0,-1,+1 (mod 5). - Wolfdieter Lang, Jul 05 2019
a(n+1) is the number of wedged n-dimensional spheres in the homotopy of the neighborhood complex of Kneser graph KG_{2,n}. Here, KG_{2,n} is a graph whose vertex set is the collection of subsets of cardinality 2 of set {1,2,...,n+3,n+4} and two vertices are adjacent if and only if they are disjoint. - Anurag Singh, Mar 22 2021
Also the number of squares between (n+2)^2 and (n+2)^4. - Karl-Heinz Hofmann, Dec 07 2021
(x, y, z) = (A001105(n+1), -a(n-1), -a(n)) are solutions of the Diophantine equation x^3 + 4*y^3 + 4*z^3 = 8. - XU Pingya, Apr 25 2022
The least significant digit of terms of this sequence cycles through 1, 5, 1, 9, 9. - Torlach Rush, Jun 05 2024

Examples

			From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
                                        o               o
                        o           o   o o           o o
            o       o   o o       o o   o o o       o o o
    o   o   o o   o o   o o o   o o o   o o o o   o o o o
o   o o o   o o o o o   o o o o o o o   o o o o o o o o o
n=0  n=1       n=2           n=3               n=4
(End)
From _Klaus Purath_, Mar 18 2019: (Start)
Examples:
a(0) = 1: 1^1-0*1 = 1, 0+1 = 1 (Fibonacci A000045).
a(1) = 5: 3^2-1*4 = 5, 1+3 = 4 (Lucas A000032).
a(2) = 11: 4^2-1*5 = 11, 1+4 = 5 (A000285); 5^2-2*7 = 11, 2+5 = 7 (A001060).
a(3) = 19: 5^2-1*6 = 19, 1+5 = 6 (A022095); 7^2-3*10 = 19, 3+7 = 10 (A022120).
a(4) = 29: 6^2-1*7 = 29, 1+6 = 7 (A022096); 9^2-4*13 = 29, 4+9 = 13 (A022130).
a(11)/5 = 31: 7^2-2*9 = 31, 2+7 = 9 (A022113); 8^2-3*11 = 31, 3+8 = 11 (A022121).
a(24)/11 = 59: 9^2-2*11 = 59, 2+9 = 11 (A022114); 12^2-5*17 = 59, 5+12 = 17 (A022137).
(End)
		

Crossrefs

Complement of A028392. Third column of array A094954.
Cf. A000217, A002522, A062392, A062786, A127701, A135223, A143596, A052905, A162997, A062938 (squares of this sequence).
A110331 and A165900 are signed versions.
Cf. A002327 (primes), A094210.
Frobenius number for k successive numbers: this sequence (k=2), A079326 (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Programs

Formula

a(n) = sqrt(A062938(n)). - Floor van Lamoen, Oct 08 2001
a(0) = 1, a(1) = 5, a(n) = (n+1)*a(n-1) - (n+2)*a(n-2) for n > 1. - Gerald McGarvey, Sep 24 2004
a(n) = A105728(n+2, n+1). - Reinhard Zumkeller, Apr 18 2005
a(n) = A109128(n+2, 2). - Reinhard Zumkeller, Jun 20 2005
a(n) = 2*T(n+1) - 1, where T(n) = A000217(n). - Gary W. Adamson, Aug 15 2007
a(n) = A005408(n) + A002378(n); A084990(n+1) = Sum_{k=0..n} a(k). - Reinhard Zumkeller, Aug 20 2007
Binomial transform of [1, 4, 2, 0, 0, 0, ...] = (1, 5, 11, 19, ...). - Gary W. Adamson, Sep 20 2007
G.f.: (1+2*x-x^2)/(1-x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - R. J. Mathar, Jul 11 2009
a(n) = (n + 2 + 1/phi) * (n + 2 - phi); where phi = 1.618033989... Example: a(3) = 19 = (5 + .6180339...) * (3.381966...). Cf. next to leftmost column in A162997 array. - Gary W. Adamson, Jul 23 2009
a(n) = a(n-1) + 2*(n+1), with n > 0, a(0) = 1. - Vincenzo Librandi, Nov 18 2010
For k < n, a(n) = (k+1)*a(n-k) - k*a(n-k-1) + k*(k+1); e.g., a(5) = 41 = 4*11 - 3*5 + 3*4. - Charlie Marion, Jan 13 2011
a(n) = lower right term in M^2, M = the 2 X 2 matrix [1, n; 1, (n+1)]. - Gary W. Adamson, Jun 29 2011
G.f.: (x^2-2*x-1)/(x-1)^3 = G(0) where G(k) = 1 + x*(k+1)*(k+4)/(1 - 1/(1 + (k+1)*(k+4)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 16 2012
Sum_{n>0} 1/a(n) = 1 + Pi*tan(sqrt(5)*Pi/2)/sqrt(5). - Enrique Pérez Herrero, Oct 11 2013
E.g.f.: exp(x) (1+4*x+x^2). - Tom Copeland, Dec 02 2013
a(n) = A005408(A000217(n)). - Tony Foster III, May 31 2016
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2).
Product_{n>=1} (1 - 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2)/6. (End)
a(5*n+1)/5 = A062786(n+1). - Torlach Rush, Jun 05 2024

Extensions

Minor edits by N. J. A. Sloane, Jul 04 2010, following suggestions from the Sequence Fans Mailing List

A099876 Decimal expansion of a nested radical: sqrt(1! + sqrt(2! + sqrt(3! + ...

Original entry on oeis.org

1, 8, 2, 7, 0, 1, 4, 7, 1, 7, 6, 0, 8, 5, 9, 2, 2, 2, 6, 3, 7, 3, 8, 4, 3, 1, 9, 2, 8, 5, 2, 8, 9, 2, 4, 7, 3, 7, 4, 7, 9, 3, 6, 2, 9, 6, 0, 8, 2, 5, 4, 8, 5, 4, 4, 2, 6, 1, 6, 2, 4, 6, 2, 9, 5, 6, 2, 1, 0, 0, 1, 5, 2, 3, 8, 7, 0, 9, 6, 7, 2, 7, 8, 3, 1, 0, 7, 2, 4, 4, 1, 6, 6, 1, 4, 3, 0, 5, 5, 5, 0
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 02 2004

Keywords

Examples

			1.82701471760859222637384319285...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Fold[Sqrt[#1 + #2] &, 0, Reverse[Range[100]!]], 10, 111][[1]]
  • PARI
    t=0; forstep(n=300,1,-1,t=sqrt(t+n!)); t \\ gives more than enough correct digits for the number given here.

A257582 Lexicographically largest increasing sequence of primes for which the continued square root map (see A257574) produces Pi.

Original entry on oeis.org

5, 17, 37, 53, 131, 181, 263, 317, 859, 887, 1637, 2837, 3413, 5861, 6491, 10531, 13399, 14083, 14563, 21433, 29717, 30529, 31663, 31771, 32069, 32587, 36559, 36809, 39359, 39461, 45319, 46933, 49801, 52391, 52579, 52889, 55871, 57493, 59107, 59539, 64187, 64633, 75377, 77491, 82351, 86587
Offset: 1

Views

Author

N. J. A. Sloane, May 03 2015

Keywords

Comments

The continued square root map applied to a sequence (x,y,z,...) is CSR(x,y,z,...) = sqrt(x + sqrt(y + sqrt(z + ...))); this is well defined if the logarithm of the terms is O(2^n).

Crossrefs

Cf. A000796 (Pi), A257764 (analog for e = 2.71828... instead of Pi), A257809 (analog for delta = 4.6692...), A257574.

Programs

  • PARI
    (CSR(v, s)=forstep(i=#v, 1, -1, s=sqrt(v[i]+s)); s); a=[5]; for(n=1, 50, print1(a[#a]", "); for(i=primepi(a[#a])+1, oo, CSR(concat(a, vector(9, j, prime(i+j))))>=Pi && (a=concat(a, prime(i))) && break)) \\ The default precision of 38 digits yields correct terms only below 30000. To compute larger values correctly, realprecision must be increased. - M. F. Hasler, May 03 2018

Extensions

a(15)-a(46) from Chai Wah Wu, May 06 2015
Edited by M. F. Hasler, May 03 2018

A257764 Lexicographically largest increasing sequence of primes for which the continued square root map (see A257574) produces the decimal expansion of e (Euler's number).

Original entry on oeis.org

3, 13, 31, 59, 67, 103, 179, 193, 227, 229, 317, 983, 1201, 1213, 1321, 1787, 1811, 2179, 3571, 4817, 5333, 6803, 10433, 12197, 13063, 19391, 21283, 24571, 31817, 42307, 45377, 49957, 61909, 67933, 70573, 74843, 82421, 85909, 91099, 99241, 101293, 109639, 112087
Offset: 1

Views

Author

Chai Wah Wu, May 09 2015

Keywords

Comments

Similar to A257582, but converging to e.

Examples

			sqrt(3) =  1.7320508075688772...
sqrt(3+sqrt(13)) = 2.570126704165378...
sqrt(3+sqrt(13+sqrt(31))) = 2.703522309917472...
sqrt(3+sqrt(13+sqrt(31+sqrt(59)))) = 2.7173508299457327...
sqrt(3+sqrt(13+sqrt(31+sqrt(59+sqrt(67))))) = 2.718217091497069...
sqrt(3+sqrt(13+sqrt(31+sqrt(59+sqrt(67+sqrt(103)))))) = 2.7182780002752187...
		

Crossrefs

Cf. A001113 (e), A257582 (analog for Pi instead of e), A257809 (analog for delta = 4.6692...), A257574.

Programs

  • PARI
    (CSR(v, s)=forstep(i=#v, 1, -1, s=sqrt(v[i]+s)); s); a=[3]; for(n=1, 50, print1(a[#a]", "); for(i=primepi(a[#a])+1, oo, CSR(concat(a, vector(9, j, prime(i+j))))>=exp(1)&& (a=concat(a, prime(i)))&& break)) \\ The standard precision of 38 digits yields incorrect terms beyond 10433. Increase realprecision to compute larger values. - M. F. Hasler, May 03 2018

Extensions

Edited by M. F. Hasler, May 03 2018

A257809 Lexicographically largest strictly increasing sequence of primes for which the continued square root map produces Feigenbaum's constant delta = 4.6692016... (A006890).

Original entry on oeis.org

13, 67, 97, 139, 293, 661, 1163, 1657, 2039, 3203, 3469, 5171, 6361, 6661, 7393, 7901, 8969, 9103, 9137, 11971, 12301, 13487, 14083, 14699, 15473, 19141, 21247, 28099, 31039, 35423, 39047, 49223, 58427, 61493, 62171, 67699, 71971, 75869, 78857, 81533, 88007, 93199
Offset: 1

Views

Author

Chai Wah Wu, May 10 2015

Keywords

Comments

The continued square root map takes a finite or infinite sequence (x, y, z, ...) to the number CSR(x, y, z,...) = sqrt(x + sqrt(y + sqrt(z + ...))). It is well defined if the logarithm of the terms is O(2^n).
The terms are defined to be the largest possible choice such that the sequence can remain strictly increasing without the CSR growing beyond delta = 4.66920...

Examples

			From _M. F. Hasler_, May 03 2018: (Start)
We look for a strictly increasing sequence of primes (p,q,r,...) such that CSR(p,q,r,...) = sqrt(p + sqrt(q + sqrt(r + ...))) = delta = 4.66920...
The first term must be less than delta^2 ~ 21.8, but p = 19 and also p = 17 are excluded, since CSR(17,19,23,...) > 4.67. It appears that p = 13 does not lead to a contradiction, so this is the largest possible choice for p, whence a(1) = 13.
The second term could be chosen to be q = 17, provided that subsequent terms are large enough to ensure CSR(p, q, r,...) = delta, which is always possible. But one can verify that any q between 19 and 67 is also possible without contradiction. If we try q = 71, then we find that CSR(13, 71, 73, ...) > 4.68. So a(2) = 67, etc. (End)
		

Crossrefs

Programs

  • PARI
    (CSR(v,s)=forstep(i=#v,1,-1,s=sqrt(v[i]+s));s); a=[13]; for(n=1,50, print1(a[#a]","); for(i=primepi(a[#a])+1,oo, CSR(concat(a,vector(9,j,prime(i+j))))>=delta&& (a=concat(a,prime(i)))&& break)) \\  For delta, see A006890. - M. F. Hasler, May 03 2018

Extensions

Edited by M. F. Hasler, May 02 2018

A257858 An increasing sequence of integers for which the continued square root map (see A257574) produces the decimal expansion of Pi.

Original entry on oeis.org

6, 10, 19, 27, 29, 32, 42, 45, 56, 67, 75, 94, 109, 122, 138, 144, 151, 152, 172, 181, 194, 204, 205, 232, 256, 290, 316, 325, 346, 380, 412, 446, 478, 511, 520, 533, 580, 584, 617, 623, 654, 658, 661, 682, 734, 773, 823, 836, 865, 903, 954, 979, 997, 1008, 1059
Offset: 1

Views

Author

Chai Wah Wu, May 13 2015

Keywords

Examples

			sqrt(6) = 2.449489742783178
sqrt(6+sqrt(10)) = 3.0269254467476365
sqrt(6+sqrt(10+sqrt(19))) = 3.1287879095060176
sqrt(6+sqrt(10+sqrt(19+sqrt(27)))) = 3.140462825727146
sqrt(6+sqrt(10+sqrt(19+sqrt(27+sqrt(29))))) = 3.1414928066743406
		

Crossrefs

Showing 1-6 of 6 results.