cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A005575 a(n) = A259095(2n,n).

Original entry on oeis.org

0, 0, 1, 2, 5, 11, 20, 37, 63, 110, 174, 283, 435, 671, 1001, 1492, 2160, 3127, 4442, 6269, 8739, 12109, 16597, 22618, 30576, 41077, 54834, 72788, 96056, 126131, 164829, 214327, 277534, 357810, 459507, 587779, 749220, 951473, 1204501, 1519691, 1911618, 2397247, 2997985, 3738482, 4649981, 5768457, 7138640, 8812704, 10854735, 13339286
Offset: 1

Views

Author

Keywords

Comments

Computed by R. K. Guy in 1988.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, d) option remember; `if`(i*(i+1)/2n, 0, d*b(n-i, i-1, 1))))
        end:
    a:= n-> b(n, n-1, 1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 08 2016
  • Mathematica
    b[n_, i_, d_] := b[n, i, d] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1, d+1] + If[i > n, 0, d*b[n-i, i-1, 1]]]];
    a[n_] := b[n, n-1, 1];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jul 28 2016, after Alois P. Heinz *)

Extensions

Edited by N. J. A. Sloane, Jun 20 2015
Terms a(25) and beyond from Joerg Arndt, Apr 09 2016

A005576 The limiting sequence [A259095(r(r+1)/2-s,r), s=0,1,2,...,r-1] for very large r.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 9, 13, 17, 25, 32, 43, 56, 73, 95, 122, 155, 196, 248, 309, 388, 480, 595, 731, 899, 1096, 1338, 1624, 1967, 2373, 2860, 3431, 4111, 4911, 5853, 6963, 8263, 9785, 11565, 13646, 16064, 18884, 22155, 25953, 30349, 35441, 41311, 48098, 55906, 64900, 75231, 87103, 100702, 116296, 134130, 154522
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, d) option remember; `if`(i*(i+1)/2n, 0, d*b(n-i, i-1, 1))))
        end:
    a:= n-> b(n*(n-1)/2, n, 1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jul 08 2016
  • Mathematica
    b[n_, i_, d_] := b[n, i, d] = If[i*(i + 1)/2 < n, 0, If[n == 0, 1, b[n, i - 1, d + 1] + If[i > n, 0, d*b[n - i, i - 1, 1]]]];
    a[n_] := b[n*(n - 1)/2, n, 1];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jul 28 2016, after Alois P. Heinz *)

Extensions

Edited by N. J. A. Sloane, Jun 20 2015
Terms a(0)..a(11) computed by R. K. Guy
Terms a(12)=56 and beyond from Joerg Arndt, Apr 10 2016

A005577 Maxima of the rows of the triangle A259095.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 20, 27, 35, 44, 56, 73, 91, 115, 148, 186, 227, 283, 358, 435, 538, 671, 813, 1001, 1233, 1492, 1815, 2223, 2673, 3247, 3933, 4713, 5683, 6850, 8170, 9785, 11725, 13948, 16587, 19783, 23468, 27710, 32942, 38956, 45852, 54133, 63879, 75000, 87909, 103471, 121273, 141629
Offset: 1

Views

Author

Keywords

Comments

Computed by R. K. Guy in 1988.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, d) option remember; `if`(i*(i+1)/2n, 0, d*b(n-i, i-1, 1))))
        end:
    a:= n-> max(seq(b(n-r, r-1, 1), r=1..n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 08 2016
  • Mathematica
    b[n_, i_, d_] := b[n, i, d] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, b[n, i-1, d+1] + If[i > n, 0, d*b[n-i, i-1, 1]]]];
    a[n_] := Max[Table[b[n-r, r-1, 1], {r, 1, n}]];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 28 2016, after Alois P. Heinz *)

Extensions

Edited by N. J. A. Sloane, Jun 20 2015

A005578 a(2*n) = 2*a(2*n-1), a(2*n+1) = 2*a(2*n)-1.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462, 10923, 21846, 43691, 87382, 174763, 349526, 699051, 1398102, 2796203, 5592406, 11184811, 22369622, 44739243, 89478486, 178956971, 357913942, 715827883, 1431655766, 2863311531, 5726623062, 11453246123
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Arima sequence" after Yoriyuki Arima who in 1769 constructed this sequence as the number of moves of the outer ring in the optimal solution for the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Let u(k), v(k), w(k) be the 3 sequences defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1) = u(k) + v(k), v(k+1) = u(k) + w(k), w(k+1) = v(k) + w(k); let M(k) = Max(u(k), v(k), w(k)); then a(n) = M(n). - Benoit Cloitre, Mar 25 2002
Unimodal analog of Fibonacci numbers: a(n+1) = Sum_{k=0..n/2} A071922(n-k, n-2*k). Based on the observation that F_{n+1} = Sum_{k} binomial (n-k, k). - Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 30 2002
Numbers n at which the length of the symmetric signed digit expansion of n with q=2 (i.e., the length of the representation of n in the (-1,0,1)2 number system) increases. - _Ralf Stephan, Jun 30 2003
Row sums of Riordan array (1/(1-x), x/(1-2*x^2)). - Paul Barry, Apr 24 2005
For n > 0, record-values of A107910: a(n) = A107910(A023548(n)). - Reinhard Zumkeller, May 28 2005
2^(n+1) = 2*a(n) + 2*A001045(n) + A000975(n-1); e.g., 2^6 = 64 = 2*a(5) + 2*A001045(5) + 2*A000975(4) = 2*11 + 2*11 + 2*10. Let a(n), A001045(n) and A000975(n-1) = the legs of a triangle (a, b, c). Then a(n-1), A001045(n-1) and A000975(n-2) = (S-c), (S-b), (S-a), where S = the triangle semiperimeter. Example: a(5), A001045(5) and A000975(4) = triangle (a, b, c) = (11, 11, 10). Then a(4), A001045(4), A000975(3) = (S-c), (S-b), (S-a) = (6, 5, 5). - Gary W. Adamson, Dec 24 2007
a(n) is the number of length-n binary representations of a nonnegative integer that is divisible by 3. The initial digits are allowed to be 0's. a(4) = 6 because we have 0000, 0011, 0110, 1001, 1100, 1111. - Geoffrey Critzer, Jan 13 2014
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 0, 1; 0, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [1, 1, 0; 1, 0, 1; 0, 1, 1]. - R. J. Mathar, Feb 04 2014
With 0 prefixed, this sequence is an autosequence of the first kind because the sequence of first differences A001045 is. Its companion is A052950. - Paul Curtz, Dec 18 2018, edited by M. F. Hasler, Dec 21 2018
Apparently, the sequence gives the distinct values taken by A129761, the first differences of fibbinary numbers. - Rémy Sigrist, Oct 26 2019
The sequence with offset 1 can be generated in three steps starting with A158780. First, put in alternate signs (1, -1, 1, -2, 2, -4, ...) and take the inverse; getting (1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ...). Take the invert transform of the latter, resulting in the sequence. It follows from the inverti transform being 1, 1, 0, 1, 1, 2, 3, ... that (for example), a(9) = 171 = (1, 1, 0, 1, 1, 2, 3, 5, 8) dot (86, 43, 0, 11, 6, 6, 6, 5, 8) = (86 + 43 + 0 + 11 + 6 + 6 + 6 + 5 + 8). A similar procedure is shown in the Aug 08 2019 comment of A006356. - Gary W. Adamson, Feb 04 2022

References

  • R. K. Guy, Graphs and the strong law of small numbers. Graph theory, combinatorics and applications. Vol. 2 (Kalamazoo, MI, 1988), 597-614, Wiley-Intersci. Publ., Wiley, New York, 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections: A007583 and A047849.
Cf. also A000975, A001045 (first differences), A129761.
Cf. A006356.

Programs

  • GAP
    List([0..40],n->(2^(n+1)+3+(-1)^n)/6); # Muniru A Asiru, Dec 22 2018
    
  • Magma
    [(2^(n+1)+3+(-1)^n)/6: n in [0..40]]; // Vincenzo Librandi, Aug 14 2011
    
  • Maple
    A005578:=-(-1+z+z^2)/((z-1)*(2*z-1)*(z+1)); # Simon Plouffe in his 1992 dissertation
    with(combstruct):ZL0:=S=Prod(Sequence(Prod(a, Sequence(b))), a):ZL1:=Prod(begin_blockP, Z, end_blockP):ZL2:=Prod(begin_blockLR, Z, Sequence(Prod(mu_length, Z), card>=1), end_blockLR): ZL3:=Prod(begin_blockRL, Sequence(Prod(mu_length, Z), card>=1), Z, end_blockRL):Q:=subs([a=Union(ZL3), b=ZL3], ZL0), begin_blockP=Epsilon, end_blockP=Epsilon, begin_blockLR=Epsilon, end_blockLR=Epsilon, begin_blockRL=Epsilon, end_blockRL=Epsilon, mu_length=Epsilon:temp15:=draw([S, {Q}, unlabelled], size=15):seq(count([S, {Q}, unlabelled], size=n), n=2..34); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    a=0; Table[a=2^n-a;(a/2+1)/2,{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Nov 22 2009 *)
    LinearRecurrence[{2,1,-2}, {1,1,2}, 40] (* G. C. Greubel, Aug 26 2019 *)
  • PARI
    a(n)=(2^(n+1)+3+(-1)^n)/6 \\ Charles R Greathouse IV, Mar 22 2016
    
  • Python
    print([1+2**n//3 for n in range(40)])  # Gennady Eremin, Feb 05 2022
  • Sage
    [(2^(n+1)+3+(-1)^n)/6 for n in (0..40)] # G. C. Greubel, Aug 26 2019
    

Formula

a(n) = ceiling(2^n/3).
a(n) = 1 + floor((2^n)/3) (proof by mathematical induction).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
From Paul Barry, Jul 20 2003: (Start)
a(n) = A001045(n) + A000035(n+1), where A000035 = (0, 1, 0, 1, ...).
G.f.: (1 - x - x^2)/((1-x^2)*(1-2*x)). [Guy, 1988];
E.g.f.: (exp(2*x) - exp(-x))/3 + cosh(x) = (2*exp(2*x) + 3*exp(x) + exp(-x))/6. (End)
The 30 listed terms are given by a(0)=1, a(1)=1 and, for n > 1, by a(n) = a(n-1) + a(n-2) + Sum_{i=0..n-4} Fibonacci(i)*a(n-4-i). - John W. Layman, Jan 07 2000
a(n) = (2^(n+1) + 3 + (-1)^n)/6. - Vladeta Jovovic, Jul 02 2002
Binomial transform of A001045(n-1)(-1)^n + 0^n/2. - Paul Barry, Apr 28 2004
a(n) = (1 + A001045(n+1))/2. - Paul Barry, Apr 28 2004
a(n) = Sum_{k=0..n} (-1)^k*Sum_{j=0..n-k} (if((j-k) mod 2)=0, binomial(n-k, j), 0). - Paul Barry, Jan 25 2005
Let M = the 6 X 6 adjacency matrix of a benzene ring, (reference): [0,1,0,0,0,1; 1,0,1,0,0,0; 0,1,0,1,0,0; 0,0,1,0,1,0; 0,0,0,1,0,1; 1,0,0,0,1,0]. Then a(n) = leftmost nonzero term of M^n * [1,0,0,0,0,0]. E.g.: a(6) = 22 since M^6 * [1,0,0,0,0,0] = [22,0,21,0,21,0]. - Gary W. Adamson, Jun 14 2006
Starting (1, 2, 3, 6, 11, 22, ...), = row sums of triangle A135229. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), A000975(n-1)]. - Gary W. Adamson, Dec 24 2007
a(n) = 1 + 2^(n-1) - a(n-1) = a(n-1) + 2*a(n-2) - 1 = a(n-2) + 2^(n-2). - Paul Curtz, Jan 31 2009
a(n) = A023105(n+1) - 1. - Carl Joshua Quines, Jul 17 2019

Extensions

Edited by N. J. A. Sloane, Jun 20 2015

A001524 Number of stacks, or arrangements of n pennies in contiguous rows, each touching 2 in row below.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 38, 53, 75, 103, 142, 192, 260, 346, 461, 607, 797, 1038, 1348, 1738, 2234, 2856, 3638, 4614, 5832, 7342, 9214, 11525, 14369, 17863, 22142, 27371, 33744, 41498, 50903, 62299, 76066, 92676, 112666, 136696, 165507, 200018
Offset: 0

Views

Author

Keywords

Comments

Also n-stacks with strictly receding left wall.
Weakly unimodal compositions such that each up-step is by at most 1 (and first part 1). By dropping the requirement for weak unimodality one obtains A005169. - Joerg Arndt, Dec 09 2012
The values of a(19) and a(20) in Auluck's table on page 686 are wrong (they have been corrected here). - David W. Wilson, Mar 07 2015
Also the number of overpartitions of n having more overlined parts than non-overlined parts. For example, a(5) = 5 counts the overpartitions [5'], [4',1'], [3',2'], [3',1',1] and [2',2,1']. - Jeremy Lovejoy, Jan 15 2021

Examples

			For a(6)=8 we have the following stacks:
..x
.xx .xx. ..xx .x... ..x.. ...x. ....x
xxx xxxx xxxx xxxxx xxxxx xxxxx xxxxx xxxxxx
From _Franklin T. Adams-Watters_, Jan 18 2007: (Start)
For a(7) = 12 we have the following stacks:
..x. ...x
.xx. ..xx .xxx .xx.. ..xx. ...xx
xxxx xxxx xxxx xxxxx xxxxx xxxxx
and
.x.... ..x... ...x.. ....x. .....x
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A259095.

Programs

  • Maple
    s := 1+sum(z^(n*(n+1)/2)/((1-z^(n))*product((1-z^i), i=1..n-1)^2), n=1..50): s2 := series(s, z, 300): for j from 1 to 100 do printf(`%d,`,coeff(s2, z, j)) od: # James Sellers, Feb 27 2001
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i>n, 0, `if`(
          irem(n, i)=0, 1, 0)+add(j*b(n-i*j, i+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    m = 45; CoefficientList[ Series[Sum[ z^(n*(n+1)/2)/((1-z^(n))*Product[(1-z^i), {i, 1, n-1}]^2), {n, 1, m}], {z, 0, m}], z] // Prepend[Rest[#], 1] &
    (* Jean-François Alcover, May 19 2011, after Maple prog. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0,(sqrt(8*n + 1) - 1) / 2, x^((k^2 + k) / 2) / prod( i=1, k, (1 - x^i + x * O(x^n))^((iMichael Somos, Apr 27 2003 */

Formula

G.f.: sum(n>=1, q^(n*(n+1)/2) / prod(k=1..n-1, 1-q^k)^2 / (1-q^n) ). [Joerg Arndt, Jun 28 2013]
a(n) = sum_{m>0,k>0,2*k^2+k+2*m<=n-1} A008289(m,k)*A000041(n-k*(1+2k)-2*m-1). - [Auluck eq 29]
From Vaclav Kotesovec, Mar 03 2020: (Start)
Pi * sqrt(2/3) <= n^(-1/2)*log(a(n)) <= Pi * sqrt(5/6). [Auluck, 1951]
log(a(n)) ~ 2*Pi*sqrt(n/5). [Wright, 1971]
a(n) ~ exp(2*Pi*sqrt(n/5)) / (sqrt(2) * 5^(3/4) * (1 + sqrt(5)) * n). (End)
a(n) = A143184(n) - A340659(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

Corrected by R. K. Guy, Apr 08 1988
More terms from James Sellers, Feb 27 2001

A259096 a(n) = A000785(n) - A005575(n-1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 10, 19, 52, 105, 224, 429, 820, 1484, 2668, 4627, 7928, 13305, 22050, 35988, 58128, 92792, 146790, 230082, 357831, 552310, 846876, 1290231, 1954453, 2944513, 4413897, 6585072, 9780996, 14466926, 21313816, 31283424, 45753928, 66691357, 96897846
Offset: 2

Views

Author

N. J. A. Sloane, Jun 20 2015

Keywords

Comments

Proposed and computed by R. K. Guy in 1988.

Crossrefs

Extensions

More terms from Alois P. Heinz, Jul 11 2016
More terms from Amiram Eldar, May 23 2024
Showing 1-6 of 6 results.