cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324495 Average number of steps t(n) required to get n by repeatedly toggling one of the ceiling(log_2(n)) bits of the binary result of the previous step at a random position with equal probability of the bit positions, starting with all bits 0. The fractional part of t is given separately, i.e., t(n) = a(n) + A324496(n)/A324497(n).

Original entry on oeis.org

1, 3, 4, 7, 9, 9, 10, 15, 18, 18, 20, 18, 20, 20, 21, 31, 37, 37, 40, 37, 40, 40, 41, 37, 40, 40, 41, 40, 41, 41, 42, 63, 74, 74, 78, 74, 78, 78, 80, 74, 78, 78, 80, 78, 80, 80, 82, 74, 78, 78, 80, 78, 80, 80, 82, 78, 80, 80, 82, 80, 82, 82, 83, 127, 147, 147, 153
Offset: 1

Views

Author

Hugo Pfoertner, Mar 05 2019

Keywords

Comments

The problem is related to random walks on the edges of n-dimensional hypercubes.
a(n) is only dependent on the length of the binary representation A070939(n) and on the binary weight A000120(n).

Examples

			a(5) = 9 is given by the sum of occurrence probabilities of toggle chains of even lengths 2*k, multiplied by the lengths.
a(5) = Sum_{k>=1} 4*k*7^(k-1) / 3^(2*k) = 9.
The corresponding simulation results for 10^10 toggle chains are
  2*k Probability P    2*k*P      Cumulated
    2   0.22222334  0.44444668    0.444447
    4   0.17284183  0.69136731    1.135814
    6   0.13442963  0.80657780    1.942392
    8   0.10455718  0.83645746    2.778849
   10   0.08131600  0.81315998    3.592009
   ...
  196   0.00000000  0.00000002    9.000068
.
a(7) = Sum_{k>=1} 2*(2*k+1)*7^(k-1) / 3^(2*k) = 10.
		

Crossrefs

A324496 Numerator of fractional part of average number of bit toggles to reach n as defined in A324495. The denominator is given in A324497.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 1, 2, 3, 3, 4, 3, 4, 4, 1, 3, 4, 4, 1, 4, 1, 1, 1, 0, 0, 0, 3, 0, 3, 3, 4, 0, 3, 3, 4, 3, 4, 4, 11, 0, 3, 3, 4, 3, 4
Offset: 1

Views

Author

Hugo Pfoertner, Mar 05 2019

Keywords

Crossrefs

Extensions

a(33)-a(64) from Rainer Rosenthal, Mar 07 2019
More terms from Rainer Rosenthal, Mar 19 2019

A003149 a(n) = Sum_{k=0..n} k!*(n - k)!.

Original entry on oeis.org

1, 2, 5, 16, 64, 312, 1812, 12288, 95616, 840960, 8254080, 89441280, 1060369920, 13649610240, 189550368000, 2824077312000, 44927447040000, 760034451456000, 13622700994560000, 257872110354432000, 5140559166898176000, 107637093007589376000, 2361827297364885504000
Offset: 0

Views

Author

Keywords

Comments

From Michael Somos, Feb 14 2002: (Start)
The sequence is the resistance between opposite corners of an (n+1)-dimensional hypercube of unit resistors, multiplied by (n+1)!.
The resistances for n+1 = 1,2,3,... are 1, 1, 5/6, 2/3, 8/15, 13/30, 151/420, 32/105, 83/315, 73/315, 1433/6930, ... (see A046878/A046879). (End)
Number of {12,21*,2*1}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the sum of the reciprocals of the binomial coefficients C(n,k), multiplied by n!; example: a(4) = 4!*(1/1 + 1/4 + 1/6 + 1/4 + 1/1) = 64. - Philippe Deléham, May 12 2005
a(n) is the number of permutations on [n+1] that avoid the pattern 13-2|. The absence of a dash between 1 and 3 means the "1" and "3" must be consecutive in the permutation; the vertical bar means the "2" must occur at the end of the permutation. For example, 24153 fails to avoid this pattern: 243 is an offending subpermutation. - David Callan, Nov 02 2005
n!/a(n) is the probability that a random walk on an (n+1)-dimensional hypercube will visit the diagonally opposite vertex before it returns to its starting point. 2^n*a(n)/n! is the expected length of a random walk from one vertex of an (n+1)-dimensional hypercube to the diagonally opposite vertex (a walk which may include one or more passes through the starting point). These "random walk" examples are solutions to IBM's "Ponder This" puzzle for April, 2006. - Graeme McRae, Apr 02 2006
a(n) is the number of strong fixed points in all permutations of {1,2,...,n+1} (a permutation p of {1,2,...,n} is said to have j as a strong fixed point (splitter) if p(k)j for k>j). Example: a(2)=5 because the permutations of {1,2,3}, with marked strong fixed points, are: 1'2'3', 1'32, 312, 213', 231 and 321. - Emeric Deutsch, Oct 28 2008
Coefficients in the asymptotic expansion of exp(-2*x)*Ei(x)^2 for x -> inf, where Ei(x) is the exponential integral. - Vladimir Reshetnikov, Apr 24 2016

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (1.1.11 b, p.342).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 49. [From Emeric Deutsch, Oct 28 2008]

Crossrefs

Cf. A052186, A006932, A145878. - Emeric Deutsch, Oct 28 2008
Cf. A324495, A324496, A324497 (problem similar to the random walks on the hypercube).

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> Sum([0..n], k-> F(k)*F(n-k)) ); # G. C. Greubel, Dec 29 2019
    
  • Magma
    F:=Factorial; [ (&+[F(k)*F(n-k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq( add(k!*(n-k)!, k=0..n), n=0..20); # G. C. Greubel, Dec 29 2019
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
          ((3*n+1)*a(n-1)-n^2*a(n-2))/2)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Aug 08 2025
  • Mathematica
    Table[Sum[k!(n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
    Table[(n+1)!/2^n*Sum[2^k/(k+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 27 2012 *)
    Round@Table[-2 (n+1)! Re[LerchPhi[2, 1, n+2]], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 12 2015 *)
    Table[(n+1)!*Sum[Binomial[n+1, 2*j+1]/(2*j+1), {j, 0, n}]/2^n, {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2015 *)
    Series[Exp[-2x] ExpIntegralEi[x]^2, {x, Infinity, 20}][[3]] (* Vladimir Reshetnikov, Apr 24 2016 *)
    Table[2*(-1)^n * Sum[(2^k - 1) * StirlingS1[n, k] * BernoulliB[k], {k, 0, n}], {n, 1, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
  • PARI
    a(n)=sum(k=0,n,k!*(n-k)!)
    
  • PARI
    a(n)=if(n<0,0,(n+1)!*polcoeff(log(1-x+x^2*O(x^n))/(x/2-1),n+1))
    
  • PARI
    a(n) = my(A = 1, B = 1); for(k=1, n, B *= k; A = (n-k+1)*A + B); A \\ Mikhail Kurkov, Aug 08 2025
    
  • Python
    def a(n: int) -> int:
        if n < 2: return n + 1
        app, ap = 1, 2
        for i in range(2, n + 1):
            app, ap = ap, ((3 * i + 1) * ap - (i * i) * app) >> 1
        return ap
    print([a(n) for n in range(23)])  # Peter Luschny, Aug 08 2025
  • Sage
    f=factorial; [sum(f(k)*f(n-k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = n! + ((n+1)/2)*a(n-1), n >= 1. - Leroy Quet, Sep 06 2002
a(n) = ((3n+1)*a(n-1) - n^2*a(n-2))/2, n >= 2. - David W. Wilson, Sep 06 2002; corrected by N. Sato, Jan 27 2010
G.f.: (Sum_{k>=0} k!*x^k)^2. - Vladeta Jovovic, Aug 30 2002
E.g.f: log(1-x)/(x/2 - 1) if offset 1.
Convolution of A000142 [factorial numbers] with itself. - Ross La Haye, Oct 29 2004
a(n) = Sum_{k=0..n+1} k*A145878(n+1,k). - Emeric Deutsch, Oct 28 2008
a(n) = A084938(n+2,2). - Philippe Deléham, Dec 17 2008
a(n) = 2*Integral_{t=0..oo} Ei(t)*exp(-2*t)*t^(n+1) where Ei is the exponential integral function. - Groux Roland, Dec 09 2010
Empirical: a(n-1) = 2^(-n)*(A103213(n) + n!*H(n)) with H(n) harmonic number of order n. - Groux Roland, Dec 18 2010; offset fixed by Vladimir Reshetnikov, Apr 24 2016
O.g.f.: 1/(1-I(x))^2 where I(x) is o.g.f. for A003319. - Geoffrey Critzer, Apr 27 2012
a(n) ~ 2*n!. - Vaclav Kotesovec, Oct 04 2012
a(n) = (n+1)!/2^n * Sum_{k=0..n} 2^k/(k+1). - Vaclav Kotesovec, Oct 27 2012
E.g.f.: 2/((x-1)*(x-2)) + 2*x/(x-2)^2*G(0) where G(k) = 1 + x*(2*k+1)/(2*(k+1) - 4*x*(k+1)^2/(2*x*(k+1) + (2*k+3)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 14 2012
a(n) = 2 * n! * (1 + Sum_{k>=1} A005649(k-1)/n^k). - Vaclav Kotesovec, Aug 01 2015
From Vladimir Reshetnikov, Nov 12 2015: (Start)
a(n) = -(n+1)!*Re(Beta(2; n+2, 0))/2^(n+1), where Beta(z; a, b) is the incomplete Beta function.
a(n) = -2*(n+1)!*Re(LerchPhi(2, 1, n+2)), where LerchPhi(z, s, a) is the Lerch transcendent. (End)
a(n) = (n+1)!*(H(n+1) + (n+1)*hypergeom([1, 1, -n], [2, 2], -1))/2^(n+1), where H(n) is the harmonic number. - Vladimir Reshetnikov, Apr 24 2016
Expansion of square of continued fraction 1/(1 - x/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - ...))))))). - Ilya Gutkovskiy, Apr 19 2017
a(n) = Sum_{k=0..n+1} (-1)^(n-k)*A226158(k)*Stirling1(n+1, k). - Mélika Tebni, Feb 22 2022
E.g.f.: x/((1-x)*(2-x))-(2*log(1-x))/(2-x)^2+1/(1-x). - Vladimir Kruchinin, Dec 17 2022

Extensions

More terms from Michel ten Voorde, Apr 11 2001
Showing 1-3 of 3 results.