cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 350 results. Next

A101386 Expansion of g.f.: (5 - 3*x)/(1 - 6*x + x^2).

Original entry on oeis.org

5, 27, 157, 915, 5333, 31083, 181165, 1055907, 6154277, 35869755, 209064253, 1218515763, 7102030325, 41393666187, 241259966797, 1406166134595, 8195736840773, 47768254910043, 278413792619485, 1622714500806867, 9457873212221717, 55124524772523435, 321289275422918893
Offset: 0

Views

Author

Creighton Dement, Jan 23 2005

Keywords

Comments

A floretion-generated sequence relating to NSW numbers and numbers n such that (n^2 - 8)/2 is a square. It is also possible to label this sequence as the "tesfor-transform of the zero-sequence" under the floretion given in the program code, below. This is because the sequence "vesseq" would normally have been A046184 (indices of octagonal numbers which are also a square) using the floretion given. This floretion, however, was purposely "altered" in such a way that the sequence "vesseq" would turn into A000004. As (a(n)) would not have occurred under "natural" circumstances, one could speak of it as the transform of A000004.
Floretion Algebra Multiplication Program FAMP code: - tesforseq[ + 3'i - 2'j + 'k + 3i' - 2j' + k' - 4'ii' - 3'jj' + 4'kk' - 'ij' - 'ji' + 3'jk' + 3'kj' + 4e], Note: vesforseq = A000004, lesforseq = A002315, jesforseq = A077445
From Wolfdieter Lang, Feb 05 2015: (Start)
All positive solutions x = a(n) of the (generalized) Pell equation x^2 - 2*y^2 = +7 based on the fundamental solution (x2,y2) = (5,3) of the second class of (proper) solutions. The corresponding y solutions are given by y(n) = A253811(n).
All other positive solutions come from the first class of (proper) solutions based on the fundamental solution (x1,y1) = (3,1). These are given in A038762 and A038761.
All solutions of this Pell equation are found in A077443(n+1) and A077442(n), for n >= 0. See, e.g., the Nagell reference on how to find all solutions.
(End)

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!((5 - 3*x)/(1-6*x+x^2))); // G. C. Greubel, Jul 26 2018
    
  • Maple
    A101386:= (n) -> simplify(5*ChebyshevU(n, 3) - 3*ChebyshevU(n-1, 3)); seq( A101386(n), n = 0..30); # G. C. Greubel, Mar 17 2020
  • Mathematica
    CoefficientList[ Series[(5-3x)/(1-6x+x^2), {x,0,30}], x] (* Robert G. Wilson v, Jan 29 2005 *)
    LinearRecurrence[{6,-1},{5,27},30] (* Harvey P. Dale, Apr 23 2016 *)
  • PARI
    Vec((5-3*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Feb 05 2015
    
  • SageMath
    [5*chebyshev_U(n,3) -3*chebyshev_U(n-1,3) for n in (0..30)] # G. C. Greubel, Mar 17 2020

Formula

a(n) = A002315(n) + A077445(n+1). Note: the offset of A077445 is 1.
a(n+1) - a(n) = 2*A054490(n+1).
a(n) = 6*a(n-1) - a(n-2), a(0)=5, a(1)=27. - Philippe Deléham, Nov 17 2008
From Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009: (Start)
a(n) = ((5+sqrt(18))*(3 + sqrt(8))^n + (5-sqrt(18))*(3 - sqrt(8))^n)/2.
Third binomial transform of A164737. (End)
a(n) = rational part of z(n), with z(n) = (5+3*sqrt(2))*(3+2*sqrt(2))^n, n >= 0, the general positive solutions of the second class of proper solutions. See the preceding formula. - Wolfdieter Lang, Feb 05 2015
a(n) = 5*A001109(n+1) - 3*A001109(n). - G. C. Greubel, Mar 17 2020
a(n) = Pell(2*n+2) + 3*Pell(2*n+1), where Pell(n) = A000129(n). - G. C. Greubel, Apr 17 2020
E.g.f.: exp(3*x)*(5*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - Stefano Spezia, Mar 16 2024

Extensions

More terms from Robert G. Wilson v, Jan 29 2005

A233440 Triangle read by rows: T(n, k) = n*binomial(n, k)*A000757(k), 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 3, 0, 0, 3, 4, 0, 0, 16, 4, 5, 0, 0, 50, 25, 40, 6, 0, 0, 120, 90, 288, 216, 7, 0, 0, 245, 245, 1176, 1764, 1603, 8, 0, 0, 448, 560, 3584, 8064, 14656, 13000, 9, 0, 0, 756, 1134, 9072, 27216, 74196, 131625, 118872, 10, 0, 0, 1200, 2100, 20160, 75600, 274800, 731250, 1320800, 1202880
Offset: 0

Views

Author

Keywords

Comments

For n >= 0, 0 <= k <= n, T(n, k) is the number of permutations of n symbols that k-commute with an n-cycle (we say that two permutations f and g k-commute if H(fg, gf) = k, where H(, ) denotes the Hamming distance between permutations).
Row sums give A000142.

Examples

			For n = 4 and k = 4, T(4, 4) = 4 because all the permutations of 4 symbols that 4-commute with permutation (1, 2, 3, 4) are (1, 3), (2, 4), (1, 2)(3, 4) and (1, 4)(2, 3).
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := n Binomial[n, k] ((-1)^k+Sum[(-1)^j k!/(k-j)/j!, {j, 0, k-1}]);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = n*C(n,k)*A000757(k), 0 <= k <= n.
Bivariate e.g.f.: G(z, u) = z*exp(z*(1-u))*(u/(1-z*u)+(1-log(1-z*u))*(1-u)).
T(n, 0) = A001477(n), n>=0;
T(n, 1) = A000004(n), n>=1;
T(n, 2) = A000004(n), n>=2;
T(n, 3) = A004320(n-2), n>=3;
T(n, 4) = A027764(n-1), n>=4;
T(n, 5) = A027765(n-1)*A000757(5), n>=5;
T(n, 6) = A027766(n-1)*A000757(6), n>=6;
T(n, 7) = A027767(n-1)*A000757(7), n>=7;
T(n, 8) = A027768(n-1)*A000757(8), n>=8;
T(n, 9) = A027769(n-1)*A000757(9), n>=9;
T(n, 10) = A027770(n-1)*A000757(10), n>=10;
T(n, 11) = A027771(n-1)*A000757(11), n>=11;
T(n, 12) = A027772(n-1)*A000757(12), n>=12;
T(n, 13) = A027773(n-1)*A000757(13), n>=13;
T(n, 14) = A027774(n-1)*A000757(14), n>=14;
T(n, 15) = A027775(n-1)*A000757(15), n>=15;
T(n, 16) = A027776(n-1)*A000757(16), n>=16. - Luis Manuel Rivera Martínez, Feb 08 2014
T(n, 0)+T(n, 3) = n*A050407(n+1), for n>=0. - Luis Manuel Rivera Martínez, Mar 06 2014

A282516 Number T(n,k) of k-element subsets of [n] having a prime element sum; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 2, 4, 1, 0, 0, 3, 5, 2, 2, 0, 0, 3, 7, 6, 4, 2, 0, 0, 4, 9, 10, 11, 7, 1, 0, 0, 4, 11, 18, 21, 13, 7, 2, 0, 0, 4, 14, 26, 34, 31, 20, 7, 3, 0, 0, 4, 18, 37, 53, 59, 51, 32, 11, 2, 0, 0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2017

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0, 0;
  0, 1,  1;
  0, 2,  2,  0;
  0, 2,  4,  1,  0;
  0, 3,  5,  2,  2,   0;
  0, 3,  7,  6,  4,   2,   0;
  0, 4,  9, 10, 11,   7,   1,  0;
  0, 4, 11, 18, 21,  13,   7,  2,  0;
  0, 4, 14, 26, 34,  31,  20,  7,  3,  0;
  0, 4, 18, 37, 53,  59,  51, 32, 11,  2, 0;
  0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0;
  ...
		

Crossrefs

Row sums give A127542.
Main diagonal gives A185012.
First lower diagonal gives A282518.
T(2n,n) gives A282517.

Programs

  • Maple
    b:= proc(n, s) option remember; expand(`if`(n=0,
          `if`(isprime(s), 1, 0), b(n-1, s)+x*b(n-1, s+n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..16);
  • Mathematica
    b[n_, s_] := b[n, s] = Expand[If[n==0, If[PrimeQ[s], 1, 0], b[n-1, s] + x*b[n-1, s+n]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
    Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *)

A288387 Number T(n,k) of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 8, 5, 0, 0, 1, 25, 13, 3, 0, 0, 1, 83, 35, 13, 0, 0, 0, 1, 282, 112, 30, 4, 0, 0, 0, 1, 971, 368, 61, 29, 0, 0, 0, 0, 1, 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1, 11940, 3992, 619, 188, 56, 0, 0, 0, 0, 0, 1, 42504, 13449, 2241, 345, 240, 6, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 08 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(n,k) = 0 if k>n.
T(0,0) = 1 by convention.

Examples

			. T(4,1) = 5:
.              /\      /\        /\/\    /\        /\/\
.         /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /    \/\ .
.
Triangle T(n,k) begins:
:    1;
:    0,    1;
:    1,    0,   1;
:    2,    2,   0,  1;
:    8,    5,   0,  0, 1;
:   25,   13,   3,  0, 0, 1;
:   83,   35,  13,  0, 0, 0, 1;
:  282,  112,  30,  4, 0, 0, 0, 1;
:  971,  368,  61, 29, 0, 0, 0, 0, 1;
: 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A000108.
Main diagonal and first lower diagonal give: A000012, A000004.

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(j=n, 1,
          add(add(binomial(i, m)*binomial(j-1, i-1-m),
          m=max(k, i-j)..i-1)*b(n-j, k, i), i=1..n-j))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n, k, j), j=k..n))
        end:
    T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[j==n, 1, Sum[Sum[Binomial[i, m]*Binomial[ j-1, i-1-m], {m, Max[k, i - j], i - 1}]*b[n - j, k, i], {i, 1, n - j}]];
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n, k, j], {j, k, n}]];
    T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)

Formula

T(0,0) = 1, T(n,k) = A288386(n,k) - A288386(n,k+1).
T(2n,n-1) = A218152(n) for n>1.
T(2n,n) = A000007(n).
T(2n+1,n) = A000027(n+1) for n>0.

A318753 Number A(n,k) of rooted trees with n nodes such that no more than k subtrees extending from the same node have the same number of nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 51, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 111, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 457, 240, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2018

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,   0,   0,   0,   0,   0,   0, ...
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  2,   2,   2,   2,   2,   2,   2, ...
  0,  2,  3,   4,   4,   4,   4,   4,   4, ...
  0,  3,  7,   8,   9,   9,   9,   9,   9, ...
  0,  6, 15,  18,  19,  20,  20,  20,  20, ...
  0, 12, 34,  43,  46,  47,  48,  48,  48, ...
  0, 25, 79, 102, 110, 113, 114, 115, 115, ...
		

Crossrefs

Rows n=0-2 give: A000004, A000012, A057427.
Main diagonal gives A000081.
Cf. A318754.

Programs

  • Maple
    g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(A(i, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
        end:
    A:= (n, k)-> g(n-1$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]];
    A[n_, k_] := g[n - 1, n - 1, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A318754(n,j) for n > 0.
A(n,n+j) = A000081(n) for j >= -1.

A327085 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 4, 21, 6, 0, 0, 10, 140, 405, 28, 0, 0, 20, 575, 7904, 17154, 252, 0, 0, 35, 1785, 76880, 1415648, 1920375, 4726, 0, 0, 56, 4606, 486522, 41453650, 855834880, 547375212, 150324, 0
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. The chiral colorings of its edges come in pairs, each the reflection of the other.
A(n,k) is also the number of chiral pairs of colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of chiral pairs of colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  0 0   0    0     0      0       0       0        0        0         0 ...
  0 0   1    4    10     20      35      56       84      120       165 ...
  0 1  21  140   575   1785    4606   10416    21330    40425     71995 ...
  0 6 405 7904 76880 486522 2300305 8806336 28725192 82626270 214744629 ...
  ...
For A(2,3) = 1, the chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327083 (oriented), A327084 (unoriented), A327086 (achiral), A327089 (exactly k colors), A325000(n,k-n) (vertices, facets), A337885 (faces, peaks), A337409 (orthotope edges, orthoplex ridges), A337413 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000004, A000292(n-2), A337899, A331352.

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], 1, -1] pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[EvenQ[Total[1-Mod[#,2]]],1,-1] pc[#]k^ex[#] &/@ IntegerPartitions[n+1]]/(n+1)!
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327089(n,j) * binomial(k,j).
A(n,k) = A327083(n,k) - A327084(n,k) = (A327083(n,k) - A327086(n,k)) / 2 = A327084(n,k) - A327086(n,k).

A024490 a(n) = C(n-1,1) + C(n-3,3) + ... + C(n-2*m-1,2*m+1), where m = floor((n-2)/4).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 17, 28, 45, 72, 116, 188, 305, 494, 799, 1292, 2090, 3382, 5473, 8856, 14329, 23184, 37512, 60696, 98209, 158906, 257115, 416020, 673134, 1089154, 1762289, 2851444, 4613733, 7465176, 12078908, 19544084, 31622993, 51167078, 82790071
Offset: 2

Views

Author

Keywords

Comments

Essentially both the first difference sequence and partial sum of A005252, so its own shifted second difference and indeed virtually the same as A005252, so close to being its own shifted first difference.
From Paul Curtz, Jun 22 2011: (Start)
b(n) = 0,0,0,1,2,3,4,6, and differences are
0, 0, 0, 1, 2, 3, 4, 6,
0, 0, 1, 1, 1, 1, 2, 4,
0, 1, 0, 0, 0, 1, 2, 3,
1, -1, 0, 0, 1, 1, 1, 1,
-2, 1, 0, 1, 0, 0, 0, 1,
3, -1, 1 -1, 0, 0, 1, 1,
-4, 2, -2, 1, 0, 1, 0, 0,
6, -4, 3, -1, 1, -1, 0, 0;
b(n) is an autosequence (sequence identical to its inverse binomial transform signed) of first kind, i.e., its main diagonal is A000004.
Examples: A000045, A001045, A113405, A191754 (array). (End)
a(n) is the number of vertices of the Fibonacci cube Gamma(n-1) having an odd number of ones. The Fibonacci cube Gamma(n) can be defined as the graph whose vertices are the binary strings of length n without two consecutive 1's and in which two vertices are adjacent when their Hamming distance is exactly 1. Example: a(4) = 3; indeed, the Fibonacci cube Gamma(3) has the five vertices 000, 010, 001, 100, 101, three of which have an odd number of ones. See the E. Munarini et al. reference, p. 323. - Emeric Deutsch, Jun 28 2015
a(n) is the number of odd permutations p of 1..n such that |p(i)-i| <= 1 for i=1..n. - Dmitry Efimov, Jan 08 2016

Crossrefs

Programs

  • Magma
    [n le 4 select n else 2*Self(n-1)-Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
    
  • Mathematica
    LinearRecurrence[{2,-1,0,1},{1,2,3,4},39] (* Ray Chandler, Sep 23 2015 *)
    CoefficientList[Series[1/((1-x-x^2)(1-x+x^2)), {x,0,40}], x] (* Vincenzo Librandi, Jan 09 2016 *)
  • PARI
    Vec(x^2/((1-x-x^2)*(1-x+x^2)) + O(x^50)) \\ Michel Marcus, Feb 03 2016
    
  • SageMath
    def A024490(n): return (fibonacci(n+1) -chebyshev_U(n,1/2))/2
    [A024490(n) for n in range(2,60)] # G. C. Greubel, Apr 10 2023

Formula

a(n) = A000045(n+1) - A005252(n).
a(n) = (A000045(n+1) - A010892(n))/2. - Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003
a(n) = Sum_{k=0..n} Fibonacci(k+1)*2*sin(Pi*(n-k)/3 + Pi/3)/sqrt(3). - Paul Barry, May 18 2004
G.f.: x^2/((1-x-x^2)(1-x+x^2)). - Jon Perry, Jun 22 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1,k+1)*(1+(-1)^k)/2. - Paul Barry, Jul 05 2007
G.f.: (1 + Q(0)*x^4/2)/(1-x)^2, where Q(k) = 1 + 1/(1 - x*( 4*k + 2 - x + x^3)/( x*(4*k + 4 - x + x^3) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 07 2014
E.g.f.: exp(x/2)*(15*cosh(sqrt(5)*x/2) - 5*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/30. - Stefano Spezia, Aug 03 2022

Extensions

Additional comments from Henry Bottomley, Apr 07 2000
Corrected by Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003
Further corrections from Hugo van der Sanden, Oct 05 2006

A210472 Number A(n,k) of paths starting at {n}^k to a border position where one component equals 0 using steps that decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 33, 20, 1, 0, 1, 5, 196, 543, 70, 1, 0, 1, 6, 1305, 22096, 10497, 252, 1, 0, 1, 7, 9786, 1304045, 3323092, 220503, 924, 1, 0, 1, 8, 82201, 106478916, 1971644785, 574346824, 4870401, 3432, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2013

Keywords

Examples

			A(0,3) = 1: [(0,0,0)].
A(1,1) = 1: [(1), (0)].
A(1,2) = 2: [(1,1), (0,1)], [(1,1), (1,0)].
A(1,3) = 3: [(1,1,1), (0,1,1)], [(1,1,1), (1,0,1)], [(1,1,1), (1,1,0)].
A(2,1) = 1: [(2), (1), (0)].
A(2,2) = 6: [(2,2), (1,2), (0,2)], [(2,2), (1,2), (1,1), (0,1)], [(2,2), (1,2), (1,1), (1,0)], [(2,2), (2,1), (1,1), (0,1)], [(2,2), (2,1), (1,1), (1,0)], [(2,2), (2,1), (2,0)].
Square array A(n,k) begins:
  0, 1,   1,      1,         1,             1, ...
  0, 1,   2,      3,         4,             5, ...
  0, 1,   6,     33,       196,          1305, ...
  0, 1,  20,    543,     22096,       1304045, ...
  0, 1,  70,  10497,   3323092,    1971644785, ...
  0, 1, 252, 220503, 574346824, 3617739047205, ...
		

Crossrefs

Columns k=0-4 give: A000004, A000012, A000984, A209245, A209288.
Rows n=0-3 give: A057427, A001477, A093964, A210486.
Main diagonal gives A276490.
Cf. A089759 (unrestricted paths), A225094, A262809, A263159.

Programs

  • Maple
    b:= proc() option remember; `if`(nargs=0, 0, `if`(args[1]=0, 1,
          add(b(sort(subsop(i=args[i]-1, [args]))[]), i=1..nargs)))
        end:
    A:= (n, k)-> b(n$k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[] = 0; b[args__] := b[args] = If[First[{args}] == 0, 1, Sum[b @@ Sort[ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]]; a[n_, k_] := b @@ Array[n&, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

A226545 Number A(n,k) of squares in all tilings of a k X n rectangle using integer-sided square tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 25, 34, 25, 5, 0, 0, 6, 50, 98, 98, 50, 6, 0, 0, 7, 96, 256, 386, 256, 96, 7, 0, 0, 8, 180, 654, 1402, 1402, 654, 180, 8, 0, 0, 9, 331, 1625, 4938, 6940, 4938, 1625, 331, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Examples

			A(3,3) = 1 + 6 + 6 + 6 + 6 + 9 = 34:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |     |  |   |_|  |_|   |  |_|_|_|  |_|_|_|  |_|_|_|
  |     |  |___|_|  |_|___|  |_|   |  |   |_|  |_|_|_|
  |_____|  |_|_|_|  |_|_|_|  |_|___|  |___|_|  |_|_|_|
Square array A(n,k) begins:
  0, 0,   0,    0,     0,      0,       0,        0, ...
  0, 1,   2,    3,     4,      5,       6,        7, ...
  0, 2,   5,   12,    25,     50,      96,      180, ...
  0, 3,  12,   34,    98,    256,     654,     1625, ...
  0, 4,  25,   98,   386,   1402,    4938,    16936, ...
  0, 5,  50,  256,  1402,   6940,   33502,   157279, ...
  0, 6,  96,  654,  4938,  33502,  221672,  1426734, ...
  0, 7, 180, 1625, 16936, 157279, 1426734, 12582472, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000004, A001477, A067331(n-1) for n>0, A226546, A226547, A226548, A226549, A226550, A226551, A226552, A226553.
Main diagonal gives A226554.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then [0,0] elif n=0 or l=[] then [1,0]
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=[0$2];
             for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]])
               (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n]))[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0}, Min[l] > 0, t=Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s={0, 0}; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + Function[h, h+{0, h[[1]]}][b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1 ;; -1]]]]] ]; s]]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]][[2]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

A229001 Total sum A(n,k) of the k-th powers of lengths of ascending runs in all permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 12, 0, 1, 6, 18, 60, 0, 1, 10, 32, 96, 360, 0, 1, 18, 66, 186, 600, 2520, 0, 1, 34, 152, 426, 1222, 4320, 20160, 0, 1, 66, 378, 1110, 2964, 9086, 35280, 181440, 0, 1, 130, 992, 3186, 8254, 22818, 75882, 322560, 1814400
Offset: 0

Views

Author

Alois P. Heinz, Sep 10 2013

Keywords

Examples

			A(3,2) = 32 = 9+5+5+5+5+3 = 3^2+4*(2^2+1^2)+3*1^2: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
Square array A(n,k) begins:
:    0,    0,    0,     0,     0,      0,      0, ...
:    1,    1,    1,     1,     1,      1,      1, ...
:    3,    4,    6,    10,    18,     34,     66, ...
:   12,   18,   32,    66,   152,    378,    992, ...
:   60,   96,  186,   426,  1110,   3186,   9846, ...
:  360,  600, 1222,  2964,  8254,  25620,  86782, ...
: 2520, 4320, 9086, 22818, 66050, 214410, 765506, ...
		

Crossrefs

Columns k=0-10 give: A001710(n+1) for n>0, A001563, A228959, A229003, A228994, A228995, A228996, A228997, A228998, A228999, A229000.
Rows n=0-2 give: A000004, A000012, A052548.
Main diagonal gives: A229002.

Programs

  • Maple
    A:= (n, k)-> add(`if`(n=t, 1, n!/(t+1)!*(t*(n-t+1)+1
                 -((t+1)*(n-t)+1)/(t+2)))*t^k, t=1..n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := Sum[If[n == t, 1, n!/(t + 1)!*(t*(n - t + 1) + 1 - ((t + 1)*(n - t) + 1)/(t + 2))]* t^k, {t, 1, n}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

A(n,k) = Sum_{t=1..n} t^k * A122843(n,t).
For fixed k, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j)*C(k,j)))*exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. - Vaclav Kotesovec, Sep 12 2013
Previous Showing 61-70 of 350 results. Next