Adn[d_, n_] := Module[{ c, t1, t2}, t2 = 0; For[c = 1, c <= d, c++, If[Mod[d, c] == 0 , t2 = t2 + (x^c/c)*(E^(c*z) - 1)]]; t1 = E^t2; t1 = Series[t1, {z, 0, n+1}]; Coefficient[t1, z, n]*n!]; Pn[n_] := Module[{ d, e, t1}, t1 = 0; For[d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*Adn[d, n/d]/n]]; t1/(1 - x)]; Pnq[n_, q_] := Module[{t1}, t1 = Series[Pn[n], {x, 0, q+1}] ; Coefficient[t1, x, q]]; a[n_] := Pnq[n, 6]; Table[Print[an = a[n]]; an, {n, 1, 23}] (* Jean-François Alcover, Oct 04 2013, after N. J. A. Sloane's Maple code *)
Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &], Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
Table[SeriesCoefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &] /(n (1 - x)), {x, 0, 6}], {n, 1, 40}] (* Robert A. Russell, Feb 24 2018 *)
From Robert A. Russell, May 29 2018: (Start)
Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], 6 StirlingS2[n/#+5, 6] - 90 StirlingS2[n/#+4, 6] + 510 StirlingS2[n/#+3, 6] - 1350 StirlingS2[n/#+2, 6] + 1644 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 30], 5 StirlingS2[n/#+5, 6] - 77 StirlingS2[n/#+4, 6] + 451 StirlingS2[n/#+3, 6] - 1243 StirlingS2[n/#+2, 6] + 1584 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 20], 4 StirlingS2[n/#+5, 6] - 62 StirlingS2[n/#+4, 6] + 364 StirlingS2[n/#+3, 6] - 998 StirlingS2[n/#+2, 6] + 1252 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], Divisible[#, 15], 3 StirlingS2[n/#+5, 6] - 48 StirlingS2[n/#+4, 6] + 291 StirlingS2[n/#+3, 6] - 825 StirlingS2[n/#+2, 6] + 1074 StirlingS2[n/#+1, 6] - 495 StirlingS2[n/#, 6], Divisible[#, 12], 5 StirlingS2[n/#+5, 6] - 76 StirlingS2[n/#+4, 6] + 439 StirlingS2[n/#+3, 6] - 1196 StirlingS2[n/#+2, 6] + 1524 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 10], 3 StirlingS2[n/#+5, 6] - 49 StirlingS2[n/#+4, 6] + 305 StirlingS2[n/#+3, 6] - 891 StirlingS2[n/#+2, 6] + 1192 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], Divisible[#, 6], 4 StirlingS2[n/#+5, 6] - 63 StirlingS2[n/#+4, 6] + 380 StirlingS2[n/#+3, 6] - 1089 StirlingS2[n/#+2, 6] + 1464 StirlingS2[n/#+1, 6] - 720 StirlingS2[n/#, 6], Divisible[#, 5], 2 StirlingS2[n/#+5, 6] - 33 StirlingS2[n/#+4, 6] + 209 StirlingS2[n/#+3, 6] - 629 StirlingS2[n/#+2, 6] + 886 StirlingS2[n/#+1, 6] - 455 StirlingS2[n/#, 6], Divisible[#, 4], 3 StirlingS2[n/#+5, 6] - 48 StirlingS2[n/#+4, 6] + 293 StirlingS2[n/#+3, 6] - 844 StirlingS2[n/#+2, 6] + 1132 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], Divisible[#, 3], 2 StirlingS2[n/#+5, 6] - 34 StirlingS2[n/#+4, 6] + 220 StirlingS2[n/#+3, 6] - 671 StirlingS2[n/#+2, 6] + 954 StirlingS2[n/#+1, 6] - 495 StirlingS2[n/#, 6], Divisible[#, 2], 2 StirlingS2[n/#+5, 6] - 35 StirlingS2[n/#+4, 6] + 234 StirlingS2[n/#+3, 6] - 737 StirlingS2[n/#+2, 6] + 1072 StirlingS2[n/#+1, 6] - 560 StirlingS2[n/#, 6], True, StirlingS2[n/#+5, 6] - 19 StirlingS2[n/#+4, 6] + 138 StirlingS2[n/#+3, 6] - 475 StirlingS2[n/#+2, 6] + 766 StirlingS2[n/#+1, 6] - 455 StirlingS2[n/#, 6]] &], {n, 1, 40}]
mx = 40; Drop[CoefficientList[Series[1-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 60], Log[1-6x^d], Divisible[d, 30], (3 Log[1-6x^d] + Log[1-2x^d]) / 4, Divisible[d, 20], (5 Log[1-6x^d] + 2 Log[1-3x^d]) / 9, Divisible[d, 15], (5 Log[1-6x^d] + 3 Log[1-4x^d] + 3 Log[1-2x^d]) / 16, Divisible[d, 12], (4 Log[1-6x^d] + Log[1-x^d]) / 5, Divisible[d, 10], (11 Log[1-6x^d] + 8 Log[1-3x^d] + 9 Log[1-2x^d]) / 36, Divisible[d, 6], (11 Log[1-6x^d] + 5 Log[1-2x^d] + 4 Log[1-x^d]) / 20, Divisible[d, 5], (29 Log[1-6x^d] + 3 Log[1-4x^d] + 8 Log[1-3x^d] + 27 Log[1-2x^d] + 24 Log[1-x^d]) / 144, Divisible[d, 4], (16 Log[1-6x^d] + 10 Log[1-3x^d] + 9 Log[1-x^d]) / 45, Divisible[d, 3], (9 Log[1-6x^d] + 15 Log[1-4x^d] + 15 Log[1-2x^d] + 16 Log[1-x^d]) / 80, Divisible[d, 2], (19 Log[1-6x^d] + 40 Log[1-3x^d] + 45 Log[1-2x^d] + 36 Log[1-x^d]) / 180, True, (Log[1-6 x^d] + 15 Log[1-4 x^d] + 40 Log[1-3 x^d] + 135 Log[1-2 x^d] + 264 Log[1-x^d]) / 720], {d, 1, mx}], {x, 0, mx}], x], 1]
(End)
Comments