cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 2207 results. Next

A286163 Compound filter: a(n) = T(A046523(n), A278222(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

2, 5, 12, 14, 23, 42, 38, 44, 40, 61, 80, 117, 80, 84, 216, 152, 23, 148, 80, 148, 601, 142, 302, 375, 109, 142, 911, 183, 302, 1020, 530, 560, 61, 61, 142, 856, 467, 142, 412, 430, 467, 1741, 1832, 265, 2497, 412, 1178, 1323, 109, 265, 826, 265, 1832, 1735, 2932, 489, 412, 412, 2630, 2835, 1178, 672, 2787, 2144, 61, 625, 80, 148, 601, 850, 302, 2998, 467, 601
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A286163(n) = (2 + ((A046523(n)+A278222(n))^2) - A046523(n) - 3*A278222(n))/2;
    for(n=1, 10000, write("b286163.txt", n, " ", A286163(n)));
    
  • Python
    from sympy import prime, factorint
    import math
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a278222(n): return a046523(a005940(n + 1))
    def a(n): return T(a046523(n), a278222(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286163 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A278222 n)) 2) (- (A046523 n)) (- (* 3 (A278222 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A278222(n))^2) - A046523(n) - 3*A278222(n)).

A123684 Alternate A016777(n) with A000027(n).

Original entry on oeis.org

1, 1, 4, 2, 7, 3, 10, 4, 13, 5, 16, 6, 19, 7, 22, 8, 25, 9, 28, 10, 31, 11, 34, 12, 37, 13, 40, 14, 43, 15, 46, 16, 49, 17, 52, 18, 55, 19, 58, 20, 61, 21, 64, 22, 67, 23, 70, 24, 73, 25, 76, 26, 79, 27, 82, 28, 85, 29, 88, 30, 91, 31, 94, 32, 97, 33, 100, 34, 103, 35, 106, 36
Offset: 1

Views

Author

Alford Arnold, Oct 11 2006

Keywords

Comments

a(n) is a diagonal of Table A123685.
The arithmetic average of the first n terms gives the positive integers repeated (A008619). - Philippe Deléham, Nov 20 2013
Images under the modified '3x-1' map: a(n) = n/2 if n is even, (3n-1)/2 if n is odd. (In this sequence, the numbers at even indices n are n/2 [A000027], and the numbers at odd indices n are 3((n-1)/2) + 1 [A016777] = (3n-1)/2.) The latter correspondence interestingly mirrors an insight in David Bařina's 2020 paper (see below), namely that 3(n+1)/2 - 1 = (3n+1)/2. - Kevin Ge, Oct 30 2024

Examples

			The natural numbers begin 1, 2, 3, ... (A000027), the sequence 3*n + 1 begins 1, 4, 7, 10, ... (A016777), therefore A123684 begins 1, 1, 4, 2, 7, 3, 10, ...
1/1 = 1, (1+1)/2 = 1, (1+1+4)/3 = 2, (1+1+4+2)/4 = 2, ... - _Philippe Deléham_, Nov 20 2013
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a123684 n = a123684_list !! (n-1)
    a123684_list = concat $ transpose [a016777_list, a000027_list]
    -- Reinhard Zumkeller, Apr 29 2013
    
  • Magma
    &cat[ [ 3*n-2, n ]: n in [1..36] ]; // Klaus Brockhaus, May 12 2007
    
  • Magma
    /* From the fourteenth formula: */ [&+[1+k*(-1)^k: k in [0..n]]: n in [0..80]]; // Bruno Berselli, Jul 16 2013
    
  • Maple
    A123684:=n->n-1/4-(1/2*n-1/4)*(-1)^n: seq(A123684(n), n=1..70); # Wesley Ivan Hurt, Jul 26 2014
  • Mathematica
    CoefficientList[Series[(1 +x +2*x^2)/((1-x)^2*(1+x)^2), {x,0,70}], x] (* Wesley Ivan Hurt, Jul 26 2014 *)
    LinearRecurrence[{0,2,0,-1},{1,1,4,2},80] (* Harvey P. Dale, Apr 14 2025 *)
  • PARI
    print(vector(72, n, if(n%2==0, n/2, (3*n-1)/2))) \\ Klaus Brockhaus, May 12 2007
    
  • PARI
    print(vector(72, n, n-1/4-(1/2*n-1/4)*(-1)^n)); \\ Klaus Brockhaus, May 12 2007
    
  • SageMath
    [(n + (2*n-1)*(n%2))//2 for n in range(1,71)] # G. C. Greubel, Mar 15 2024

Formula

From Klaus Brockhaus, May 12 2007: (Start)
G.f.: x*(1+x+2*x^2)/((1-x)^2*(1+x)^2).
a(n) = (1/4)*(4*n - 1 - (2*n - 1)*(-1)^n).
a(2n-1) = A016777(n-1) = 3(n-1) + 1.
a(2n) = A000027(n) = n.
a(n) = A071045(n-1) + 1.
a(n) = A093005(n) - A093005(n-1) for n > 1.
a(n) = A105638(n+2) - A105638(n+1) for n > 1.
a(n) = A092530(n) - A092530(n-1) - 1.
a(n) = A031878(n+1) - A031878(n) - 1. (End)
a(2*n+1) + a(2*n+2) = A016825(n). - Paul Curtz, Mar 09 2011
a(n)= 2*a(n-2) - a(n-4). - Paul Curtz, Mar 09 2011
From Jaroslav Krizek, Mar 22 2011 (Start):
a(n) = n + a(n-1) for odd n; a(n) = n - A064455(n-1) for even n.
a(n) = A064455(n) - A137501(n).
Abs(a(n) - A064455(n)) = A052928(n). (End)
a(n) = A225126(n) for n > 1. - Reinhard Zumkeller, Apr 29 2013
a(n) = Sum_{k=1..n} (1 + (k-1)*(-1)^(k-1)). - Bruno Berselli, Jul 16 2013
a(n) = n + floor(n/2) for odd n; a(n) = n/2 for even n. - Reinhard Muehlfeld, Jul 25 2014

Extensions

More terms from Klaus Brockhaus, May 12 2007

A286164 Compound filter: a(n) = T(A055396(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 2, 5, 7, 9, 16, 14, 29, 12, 16, 20, 67, 27, 16, 23, 121, 35, 67, 44, 67, 23, 16, 54, 277, 18, 16, 38, 67, 65, 436, 77, 497, 23, 16, 31, 631, 90, 16, 23, 277, 104, 436, 119, 67, 80, 16, 135, 1129, 25, 67, 23, 67, 152, 277, 31, 277, 23, 16, 170, 1771, 189, 16, 80, 2017, 31, 436, 209, 67, 23, 436, 230, 2557, 252, 16, 80, 67, 40, 436, 275, 1129, 138, 16, 299
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015
    A286164(n) = (2 + ((A055396(n)+A046523(n))^2) - A055396(n) - 3*A046523(n))/2;
    for(n=1, 10000, write("b286164.txt", n, " ", A286164(n)));
    
  • Python
    from sympy import primepi, isprime, primefactors, factorint
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a055396(n), a046523(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286164 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A046523 n)) 2) (- (A055396 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A055396(n)+A046523(n))^2) - A055396(n) - 3*A046523(n)).

A286360 Compound filter (prime signature & sum of the divisors): a(n) = P(A046523(n), A000203(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 12, 49, 23, 142, 38, 239, 124, 259, 80, 753, 107, 412, 412, 1051, 173, 1237, 212, 1390, 672, 826, 302, 3427, 565, 1087, 1089, 2223, 467, 5080, 530, 4403, 1384, 1717, 1384, 7911, 743, 2086, 1836, 6352, 905, 7780, 992, 4477, 3928, 2932, 1178, 14583, 1774, 5368, 2932, 5898, 1487, 10177, 2932, 10177, 3576, 4471, 1832, 25711, 1955, 5056, 6567, 18019, 3922
Offset: 1

Views

Author

Antti Karttunen, May 10 2017

Keywords

Crossrefs

Cf. A007503, A065608 (sequences matching to this filter), also A000203, A046523, A161942, A286034, A286357.

Programs

  • PARI
    A000203(n) = sigma(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286360(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n));
    for(n=1, 10000, write("b286360.txt", n, " ", A286360(n)));
    
  • Python
    from sympy import factorint, divisor_sigma as D
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), D(n)) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286360 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A000203 n)) 2) (- (A046523 n)) (- (* 3 (A000203 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A000203(n))^2) - A046523(n) - 3*A000203(n)).

A220212 Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).

Original entry on oeis.org

0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0

Views

Author

Bruno Berselli, Dec 08 2012

Keywords

Comments

Partial sums of A172073.
Apart from 0, all terms are in A135021: a(n) = A135021(A034856(n+1)) with n>0.

Crossrefs

Cf. convolution of the natural numbers (A000027) with the k-gonal numbers (* means "except 0"):
k= 2 (A000027 ): A000292;
k= 3 (A000217 ): A000332 (after the third term);
k= 4 (A000290 ): A002415 (after the first term);
k= 5 (A000326 ): A001296;
k= 6 (A000384*): A002417;
k= 7 (A000566 ): A002418;
k= 8 (A000567*): A002419;
k= 9 (A001106*): A051740;
k=10 (A001107*): A051797;
k=11 (A051682*): A051798;
k=12 (A051624*): A051799;
k=13 (A051865*): A055268.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in A264850.

Programs

  • Magma
    A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
    
  • Magma
    I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
    CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x*(1+11*x)/(1-x)^5.
a(n) = n*(n+1)*(n+2)*(3*n-2)/6.
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(3*sqrt(3)*Pi + 27*log(3) - 17)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(6*sqrt(3)*Pi - 64*log(2) + 37)/80. (End)

A290093 Compound filter (for base-3 digit runlengths): a(n) = P(A290091(n), A290092(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 2, 3, 10, 5, 2, 5, 7, 3, 21, 5, 10, 36, 14, 5, 27, 12, 2, 5, 16, 5, 14, 23, 7, 12, 29, 3, 21, 5, 21, 78, 27, 5, 27, 12, 10, 78, 14, 36, 136, 44, 14, 90, 25, 5, 27, 23, 27, 90, 61, 12, 42, 38, 2, 5, 16, 5, 14, 23, 16, 23, 67, 5, 27, 23, 14, 44, 40, 23, 61, 80, 7, 12, 67, 12, 25, 80, 29, 38, 121, 3, 21, 5, 21, 78, 27, 5, 27, 12, 21, 465, 27, 78, 300, 90, 27
Offset: 0

Views

Author

Antti Karttunen, Jul 25 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A006047(i) = A006047(j) => A053735(i) = A053735(j).

Crossrefs

Cf. A006047, A053735, A290079 (some of the matched sequences).

Programs

Formula

a(n) = (1/2)*(2 + ((A290091(n)+A290092(n))^2) - A290091(n) - 3*A290092(n)).

A137417 Limiting sequence when we start with positive integers (A000027) and at step n >= 1 add to the term at position n + a(n) the value a(n).

Original entry on oeis.org

1, 3, 3, 4, 8, 9, 7, 12, 9, 10, 11, 12, 21, 21, 24, 16, 17, 27, 19, 42, 21, 33, 23, 36, 25, 26, 27, 28, 29, 30, 31, 48, 33, 72, 56, 36, 37, 57, 63, 40, 41, 63, 43, 44, 72, 69, 47, 48, 49, 75, 51, 78, 53, 81, 88, 84, 57, 87, 59, 126, 61, 135, 63, 64, 65, 99, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 16 2008

Keywords

Comments

At the vast majority of positions the term is changed at most once, but at some positions a change occurs twice. An example is position 20. In step 4 the term at position 4 + a(4) = 8 is changed to 8 + a(4) = 12; in step 8 the term at position 8 + a(8) = 20 is changed to 20 + a(8) = 32; in step 10 the term at position 10 + a(10) = 20 is changed to a(20) + a(10) = 32 + 10 = 42.
The first position where the term is changed three times is 3498. [Klaus Brockhaus, Apr 23 2008]
The first position where the term is changed four times is 1024914. [Rémy Sigrist, Mar 11 2017]

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    Block[{a, nn = 71}, a = Range[Max[3, IntegerLength[nn]] nn]; Do[a[[n + a[[n]]]] = a[[n + a[[n]]]] + a[[n]], {n, nn}]; a[[1 ;; nn]] ] (* Michael De Vlieger, Jul 28 2021 *)

Extensions

Extended by Klaus Brockhaus, Apr 23 2008

A020703 Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,3,5,7,...

Original entry on oeis.org

1, 4, 3, 2, 9, 8, 7, 6, 5, 16, 15, 14, 13, 12, 11, 10, 25, 24, 23, 22, 21, 20, 19, 18, 17, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 81, 80, 79, 78, 77
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2000

Keywords

Comments

Arrange A000027, the natural numbers, into a (square) spiral, say clockwise as shown in A068225. Read the numbers from the resulting counterclockwise spiral of the same shape that also begins with 1 and this sequence results. - Rick L. Shepherd, Aug 04 2006
Contribution from Hieronymus Fischer, Apr 30 2012: (Start)
The sequence may also be defined as follows: a(1)=1, a(n)=m^2 (where m^2 is the least square > a(k) for 1<=k
A reordering of the natural numbers.
The sequence is self-inverse in that a(a(n))=n.
(End)

Examples

			a(2)=4=2^2, since 2^2 is the least square >2=a(1) and the minimal number not yet in the sequence is 2>1=a(1);
a(8)=6=a(7)-1, since the minimal number not yet in the sequence (=5) is <=7=a(7).
		

References

  • R. Honsberger, "Ingenuity in Mathematics", Table 10.4 on page 87.
  • Suggested by correspondence with Michael Somos.

Crossrefs

A self-inverse permutation of the natural numbers.

Programs

  • Mathematica
    Flatten[Table[Range[n^2,(n-1)^2+1,-1],{n,10}]] (* Harvey P. Dale, Jan 10 2016 *)
    With[{nn=20},Flatten[Reverse/@TakeList[Range[nn^2],Range[1,nn,2]]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jan 28 2019 *)
  • PARI
    a(n)=local(t); if(n<1,0,t=sqrtint(n-1); 2*(t^2+t+1)-n)

Formula

Contribution from Hieronymus Fischer, Apr 30 2012: (Start)
a(n)=a(n-1)-1, if a(n-1)-1 > 0 is not in the set {a(k)| 1<=k
a(n)=n for n=k(k+1)+1, k>=0.
a(n+1)=(sqrt(a(n)-1)+2)^2, if a(n)-1 is a square, a(n+1)=a(n)-1, else.
a(n)=2*(floor(sqrt(n-1))+1)*floor(sqrt(n-1))-n+2. (End)

A137418 Limiting sequence when we start with positive integers (A000027) and at step n >= 1 add to the term at position n + digitsum(a(n)) the value digitsum(a(n)).

Original entry on oeis.org

1, 3, 3, 4, 8, 9, 7, 12, 9, 10, 15, 12, 21, 21, 27, 19, 26, 27, 19, 20, 21, 24, 23, 36, 33, 36, 36, 39, 39, 30, 37, 32, 45, 34, 44, 45, 42, 38, 39, 52, 70, 51, 57, 44, 54, 46, 54, 61, 60, 50, 63, 60, 53, 63, 85, 75, 57, 64, 59, 69, 69, 62, 72, 64, 65, 66, 67, 103, 81, 78, 71, 85
Offset: 1

Author

Ctibor O. Zizka, Apr 16 2008

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = my(va = [1..nn]); for (k=1, nn, my(i = k+sumdigits(va[k])); if (i<= #va, va[i]+=sumdigits(va[k])); ); va; \\ Michel Marcus, Aug 09 2022

Extensions

Extended by Klaus Brockhaus, Apr 23 2008

A190404 Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.

Original entry on oeis.org

8, 2, 0, 8, 1, 6, 2, 8, 0, 3, 2, 7, 5, 7, 6, 9, 3, 3, 1, 4, 6, 9, 2, 1, 3, 8, 5, 1, 1, 2, 7, 1, 4, 7, 1, 7, 1, 1, 3, 0, 3, 0, 7, 6, 8, 9, 7, 8, 3, 6, 9, 8, 7, 3, 9, 0, 2, 3, 2, 5, 8, 1, 1, 1, 9, 0, 0, 7, 2, 3, 0, 1, 8, 6, 6, 6, 7, 5, 8, 8, 7, 8, 0, 0, 1, 8, 2, 0, 8, 5, 8, 1, 1, 6, 7, 9, 5, 6, 6, 5, 4, 3, 0, 4, 4, 8, 6, 7, 6, 5, 8, 1, 7, 1, 8, 0, 9, 7, 3, 0
Offset: 0

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Suppose that F={f(i,j): i>=1, j>=1} is an array of positive integers such that every positive integer occurs exactly once in F.
Let G=G(F) denote the array defined by g(i,j)=(1/2)^f(i,j);
R(i)=Sum_{j>=1} g(i,j); i-th row sum of G;
C(j)=Sum_{i>=1} g(i,j); j-th column sum of G;
U(j)=Sum_{i>=1} g(i,i+j-1); j-th upper diagonal sum of G;
L(i)=Sum_{j>=1} g(i+j,j); i-th lower diagonal sum of G;
R(odds)=Sum_{i>=1} R(2i-1); sum, odd numbered rows of G;
R(evens)=Sum_{i>=1} R(2i); sum, even numbered rows of G;
C(odds)=Sum_{j>=1} R(2j-1); sum, odd numbered cols of G;
C(evens)=Sum_{j>=1} R(2j); sum, even numbered cols of G;
UT=Sum_{j>=1} U(j); sum, upper triangular subarray of G;
LT=Sum_{i>=1} L(i); sum, lower triangular subarray of G.
...
Note that R(odds)+R(evens)=C(odds)+C(evens)=UT+LT=1.
...
For the natural number array F=A000027:
R(1)=0.820816280327576933146921385113... (A190404)
R(2)=0.160408140163788466573460692556...
R(3)=0.0177040700818942332867303462782...
R(4)=0.00103953504094711664336517313909...
R(5)=0.0000314862704735583216825865695447...
...
R(odds)=0.838551840434481240061632331355800... (A190408)
R(evens)=0.161448159565518759938367668644199...(A190409)
...
C(1)=0.64163256065515386629... (A190405)
C(2)=0.28326512131030773259...
C(3)=0.066530242620615465175...
C(4)=0.0080604852412309303507...
C(5)=0.00049597048246186070148...
...
C(odds)=0.7086590131172367153696485920526...(A190410)
C(evens)=0.29134098688276328463035140794... (A190411)
...
D(1)=0.53137210011527713548... (A190406)
D(2)=0.25391006493009715683...
D(3)=0.062744200230554270960...
D(4)=0.0078201298601943136650...
D(5)=0.00048840046110854191952...
...
E(1)=0.12695503246504857842... (A190407)
E(2)=0.015686050057638567740...
E(3)=0.00097751623252428920813...
E(4)=0.000030525028819283869970...
E(5)=0.00000047686626214460406264...
...
UT=0.8563503956097795739814618239914245448... (A190412)
LT=0.1436496043902204260185381760085754551... (A190415)

Examples

			0.820816280327576933146921385113...
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := i + (j + i - 2)(j + i - 1)/2;
    TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A000027 *)
    r[i_] := Sum[2^-f[i, j], {j,1,400}];    (* C(row i) *)
    c[j_] := Sum[2^-f[i,j], {i,1,400}];     (* C(col j) *)
    d[h_] := Sum[2^-f[i,i+h-1], {i,1,200}]; (* C(udiag h) *)
    e[h_] := Sum[2^-f[i+h,i], {i,1,200}];   (* C(ldiag h) *)
    RealDigits[r[1], 10, 120, -1]  (* A190404 *)
    N[r[1], 30]
    N[r[2], 30]
    N[r[3], 30]
    N[r[4], 30]
    N[r[5], 30]
    N[r[6], 30]
    RealDigits[c[1], 10, 120, -1] (* A190405 *)
    N[c[1], 20]
    N[c[2], 20]
    N[c[3], 20]
    N[c[4], 20]
    N[c[5], 20]
    N[c[6], 20]
    RealDigits[d[1], 10, 20, -1] (* A190406 *)
    N[d[1], 20]
    N[d[2], 20]
    N[d[3], 20]
    N[d[4], 20]
    N[d[5], 20]
    N[d[6], 20]
    RealDigits[e[1], 10, 20, -1] (* A190407 *)
    N[e[1], 20]
    N[e[2], 20]
    N[e[3], 20]
    N[e[4], 20]
    N[e[5], 20]
    N[e[6], 20]
  • Sage
    def A190404(b):  # Generate the constant with b bits of precision
        return N(sum([(1/2)^(1+j*(j+1)/2) for j in range(1,b)])+1/2,b)
    A190404(409) # Danny Rorabaugh, Mar 25 2015

Formula

A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T=A000217.
A190406: Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).
Equals Product_{k>=1} 1 - 1/(2^(2*k + 1) - 1). - Antonio Graciá Llorente, Oct 01 2024
Equals A299998/2. - Hugo Pfoertner, Oct 01 2024
Previous Showing 11-20 of 2207 results. Next