cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A316537 Number of cyclic subgroups of the group SL(2, Z(n)), counting conjugates as distinct.

Original entry on oeis.org

1, 5, 13, 28, 49, 73, 116, 176, 202, 265, 378, 464, 550, 636, 842, 936, 1041, 1183, 1486, 1712, 2082, 2055, 2120, 3088, 2114, 3023, 2503, 4200, 4238, 4862, 4902, 4648, 6564, 5749, 7434, 7688, 6331, 8190, 9880, 11344, 10172, 12066, 9378, 13224, 14168, 11612
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Examples

			Case n=2: generators of the 5 cyclic groups are:
  [ 1 0 ]   [0 1]   [1 0]   [1 1]   [0 1]
  [ 0 1 ]   [1 0]   [1 1]   [0 1]   [1 1]
		

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..10], n->Sum( Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, 1/eulerphi(MatOrder(M)))))))}

Formula

a(n) = Sum_{k=1..A316563(n)} 1/phi(A316564(n, k)).

A316563 Maximum order of an element in the special linear group SL(2, Z(n)).

Original entry on oeis.org

1, 3, 6, 6, 10, 12, 14, 8, 18, 30, 22, 12, 26, 42, 30, 16, 34, 18, 38, 30, 42, 66, 46, 24, 50, 78, 54, 42, 58, 60, 62, 32, 66, 102, 70, 36, 74, 114, 78, 40, 82, 84, 86, 66, 90, 138, 94, 48, 98, 150, 102, 78, 106, 54, 110, 56, 114, 174, 118, 60, 122, 186, 126
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Crossrefs

Row lengths of A316564.

Programs

  • GAP
    Concatenation([1], List([2..15], n->Maximum(List(SL(2, Integers mod n), Order))));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=max(m, MatOrder(M))))))); m}

A329119 Orders of the finite groups SL_2(K) when K is a finite field with q = A246655(n) elements.

Original entry on oeis.org

6, 24, 60, 120, 336, 504, 720, 1320, 2184, 4080, 4896, 6840, 12144, 15600, 19656, 24360, 29760, 32736, 50616, 68880, 79464, 103776, 117600, 148824, 205320, 226920, 262080, 300696, 357840, 388944, 492960, 531360, 571704, 704880, 912576, 1030200, 1092624, 1224936, 1294920
Offset: 1

Views

Author

Jianing Song, Nov 05 2019

Keywords

Comments

SL_2(K) means the group of 2 X 2 matrices A over K such that det(A) = 1.
In general, let R be any commutative ring with unity, GL_n(R) be the group of n X n matrices A over R such that det(A) != 0 and SL_n(R) be the group of n X n matrices A over R such that det(A) = 1, then GL_n(R)/SL_n(R) = R* is the multiplicative group of R. This is because if we define f(M) = det(M) for M in GL_n(R), then f is a surjective homomorphism from GL_n(K) to R*, and SL_n(R) is its kernel. Thus |GL_n(R)|/|SL_n(R)| = |R*|; if K is a finite field, then |GL_n(R)|/|SL_n(R)| = |K|-1.
Also a(n) is the order of PGL_2(K) when K is a finite field with q = A246655(n) elements. Note that PGL(m,q) and SL(m,q) are not isomorphic unless gcd(m,q-1) = 1. For example, PGL(2,3) = S_4 is not isomorphic to SL(2,3), PGL(2,5) = S_5 is not isomorphic to SL(2,5). - Jianing Song, Apr 04 2022

Examples

			a(4) = 120 because A246655(4) = 5, and 5*(5^2-1) = 120.
		

Crossrefs

Subsequence of A007531.
Cf. A246655, A000056 (order of SL_2(Z_n)).
For the order of GL_2(K) see A059238.

Programs

  • Maple
    N:= 200:
    P:= select(isprime, {2,seq(i,i=3..N,2)}):
    PP:= map(proc(p) local i; seq(p^i,i=1..floor(log[p](N))) end proc, P):
    map(t -> t*(t^2-1), sort(convert(PP,list))); # Robert Israel, Nov 13 2019
  • Mathematica
    p = Select[Range[200], PrimePowerQ];
    (p-1) p (p+1) (* Jean-François Alcover, Aug 22 2020 *)
  • PARI
    [(p+1)*p*(p-1) | p <- [1..200], isprimepower(p)]

Formula

If the finite field K has q elements, then the order of the group SL_2(K) is q*(q^2-1).
a(n) = A059238(n)/(A246655(n)-1) = A007531(A246655(n)+1).

A001766 Index of (the image of) the modular group Gamma(n) in PSL_2(Z).

Original entry on oeis.org

1, 6, 12, 24, 60, 72, 168, 192, 324, 360, 660, 576, 1092, 1008, 1440, 1536, 2448, 1944, 3420, 2880, 4032, 3960, 6072, 4608, 7500, 6552, 8748, 8064, 12180, 8640, 14880, 12288, 15840, 14688, 20160, 15552, 25308, 20520, 26208, 23040, 34440, 24192, 39732, 31680
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the degree of the modular curve X(N) as a cover of the j-line.

References

  • R. C. Gunning, Lectures on Modular Forms, Princeton Univ. Press, Princeton, NJ, 1962, p. 15.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    proc(n) local b,d: b := (n^3)/2: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
  • Mathematica
    Table[ (n^3)/If[ n>2, 2, 1 ] Times@@(1-1/Select[ Range[ n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 45} ] (* Olivier Gérard, Aug 15 1997 *)
  • PARI
    a(n) = if (n==1, 1, if (n==2, 6, my(f=factor(n)); prod(k=1, #f~, 1-1/f[k,1]^2)*n^3/2)); \\ Michel Marcus, Oct 23 2019

Formula

a(n) = A000056(n) for n = 2 and (1/2)*A000056(n) for n > 2 (since -I is contained in Gamma(2) but not in Gamma(n) for n > 2).
a(n) = n * A000114(n). - Michael Somos, Jan 29 2004
a(n) = ((n^3)/2)*Product_{p | n, p prime} (1-1/p^2), for n>=3. - Michel Marcus, Oct 23 2019
Sum_{k=1..n} a(k) ~ n^4 / (8*zeta(3)). - Amiram Eldar, Jun 01 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997
Definition corrected by Mira Bernstein, May 30 2006

A115224 Number of 3 X 3 symmetric matrices over Z(n) having determinant 1.

Original entry on oeis.org

1, 28, 234, 896, 3100, 6552, 16758, 28672, 56862, 86800, 160930, 209664, 371124, 469224, 725400, 917504, 1419568, 1592136, 2475738, 2777600, 3921372, 4506040, 6435814, 6709248, 9687500, 10391472, 13817466, 15015168, 20510308, 20311200, 28628190, 29360128, 37657620
Offset: 1

Views

Author

T. D. Noe, Jan 16 2006

Keywords

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A011785 (number of 3 X 3 matrices whose determinant is 1 mod n, i.e. order of SL(3, Z_n)).

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}]
    JordanTotient[n_,k_:1] := DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]; A115224[n_IntegerQ] := JordanTotient[n^2,3]/n; Table[A115224[n], {n,100}] (* Enrique Pérez Herrero, Sep 14 2010 *)
    f[p_, e_] := (p^3 - 1)*p^(5*e - 3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 15 2020 *)

Formula

a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).
For prime p, a(p) = (p^3-1)*p^2.
Multiplicative with a(p^e) = (p^3-1)*p^(5e-3).
a(n) = A011785(n)/A000056(n).
a(n) = A059376(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = n^2*A059376(n). Dirichlet g.f.: zeta(s-5)/zeta(s-2). - R. J. Mathar, Feb 27 2011
Sum_{k=1..n} a(k) ~ 15*n^6 / Pi^4. - Vaclav Kotesovec, Feb 07 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(1 - p^3 - p^5 + p^8)) = 1.04172462829914219180789244796430293454403616906393417764614215669994022537... - Vaclav Kotesovec, Sep 20 2020

A316623 Array read by antidiagonals: T(n,k) is the order of the group SL(n,Z_k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 24, 168, 1, 1, 1, 48, 5616, 20160, 1, 1, 1, 120, 43008, 12130560, 9999360, 1, 1, 1, 144, 372000, 660602880, 237783237120, 20158709760, 1, 1, 1, 336, 943488, 29016000000, 167761422581760, 42064805779476480, 163849992929280, 1
Offset: 0

Views

Author

Andrew Howroyd, Jul 08 2018

Keywords

Comments

All rows are multiplicative.
Equivalently, the number of n X n matrices mod k with determinant 1.
Also, for k prime (but not higher prime powers) the number of n X n matrices over GF(k) with determinant 1.

Examples

			Array begins:
==============================================================
n\k| 1       2        3         4           5           6
---+----------------------------------------------------------
0  | 1       1        1         1           1            1 ...
1  | 1       1        1         1           1            1 ...
2  | 1       6       24        48         120          144 ...
3  | 1     168     5616     43008      372000       943488 ...
4  | 1   20160 12130560 660602880 29016000000 244552089600 ...
5  | 1 9999360 ...
...
		

Crossrefs

Rows n=2..4 are A000056, A011785, A011786.
Columns k=2..5, 7 are A002884, A003787, A011787, A003789, A003790.
Cf. A316622.

Programs

  • GAP
    T:=function(n,k) if k=1 or n=0 then return 1; else return Order(SL(n, Integers mod k)); fi; end;
    for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
    
  • Mathematica
    T[n_, k_] := If[k == 1 || n == 0, 1, k^(n^2-1) Product[1 - p^-j, {p, FactorInteger[k][[All, 1]]}, {j, 2, n}]];
    Table[T[n-k+1, k], {n, 0, 8}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    T(n,k)={my(f=factor(k)); if(n<1, n==0, k^(n^2-1) * prod(i=1, #f~, my(p=f[i,1]); prod(j=2, n, (1 - p^(-j)))))}

Formula

T(n,p^e) = (p^e)^(n^2-1) * Product_{j=2..n} (1 - 1/p^j) for prime p, n > 0.

A070732 Size of largest conjugacy class in the group GL(2,Z_n).

Original entry on oeis.org

1, 3, 12, 12, 30, 36, 56, 48, 108, 90, 132, 144, 182, 168, 360, 192, 306, 324, 380, 360, 672, 396, 552, 576, 750, 546, 972, 672, 870, 1080, 992, 768, 1584, 918, 1680, 1296, 1406, 1140, 2184, 1440, 1722, 2016, 1892, 1584, 3240, 1656, 2256, 2304, 2744, 2250
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = 1, b = FactorInteger[n]}, While[ Length[b] > 0, a = a*(b[[1, 1]] + 1)*b[[1, 1]]^(2b[[1, 2]] - If[ OddQ[ b[[1, 1]]], 1, 2]); b = Drop[b, 1]]; a]; Table[ f[n], {n, 1, 55}]
    Table[n*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]/EulerPhi[2*n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)
    f[p_, e_] := (p + 1)*p^(2*e - If[p == 2, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]+1)*f[i,1]^(2*f[i,2] - if(f[i,1]==2,2,1)));} \\ Amiram Eldar, Nov 05 2022

Formula

Multiplicative with a(p^e) = (p+1)*p^(2e - k), k = 1 if p is odd, k = 2 if p is 2.
a(n) = A000056(n)/A000010(2*n). - Vladeta Jovovic, Dec 22 2003
From R. J. Mathar, Apr 14 2011: (Start)
Dirichlet g.f.: (2^s-1)*zeta(s-1)*zeta(s-2)/((2^s+2)*zeta(2s-2)).
Dirichlet convolution of A000082 with a signed variant of A099892. (End)
Sum_{k=1..n} a(k) ~ 7*n^3 / (2*Pi^2). - Vaclav Kotesovec, Feb 01 2019
Sum_{n>=1} 1/a(n) = (13/11) * zeta(2)^2 * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = (13/11) * A098198 * A330523 = 1.7136743536... . - Amiram Eldar, Nov 05 2022

Extensions

Edited by Robert G. Wilson v, May 20 2002

A115076 Number of 2 X 2 symmetric matrices over Z(n) having determinant 1.

Original entry on oeis.org

1, 4, 6, 12, 30, 24, 42, 48, 54, 120, 110, 72, 182, 168, 180, 192, 306, 216, 342, 360, 252, 440, 506, 288, 750, 728, 486, 504, 870, 720, 930, 768, 660, 1224, 1260, 648, 1406, 1368, 1092, 1440, 1722, 1008, 1806, 1320, 1620, 2024, 2162, 1152, 2058, 3000
Offset: 1

Views

Author

T. D. Noe, Jan 12 2006

Keywords

Comments

a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A175647, A243380.

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p+1)*p^(2*e-1), (p-1)*p^(2*e-1)]; f[2, 1] = 4; f[2, e_] := 3*2^(2*e-2); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, v[i*j%n+1]++)); sum(i=0, n-1, v[(i^2+1)%n+1])} \\ Andrew Howroyd, Jul 04 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); p^(2*e-1)*if(p==2, if(e==1, 2, 3/2), if(p%4==1, p+1, p-1)))} \\ Andrew Howroyd, Jul 04 2018

Formula

Multiplicative with a(2^1) = 4, a(2^e) = 3*2^(2*e-2) for e > 1, a(p^e) = (p+1)*p^(2*e-1) for p mod 4 == 1, a(p^e) = (p-1)*p^(2*e-1) for p mod 4 == 3. - Andrew Howroyd, Jul 04 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = (5/(2*Pi^2)) * A175647 * A243380 = 0.282098596071... . - Amiram Eldar, Aug 28 2023

A181107 Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.

Original entry on oeis.org

1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1

Views

Author

Erdos Pal, Oct 03 2010

Keywords

Comments

The n-th row is {T(n,0),T(n,1),...,T(n,n-1)}.
Let m denote the prime power p^e.
T(m,0) = A020478(m) = (p^(e+1) + p^e-1)*p^(2*e-1).
T(m,1) = A000056(m) = (p^2-1)*p^(3*e-2).
T(prime(n),1) = A127917(n).
Sum_{k=1..n-1} T(n,k) = A005353(n).
T(n,1) = n*A007434(n) for n>=1 because A000056(n) = n*Jordan_Function_J_2(n).
T(2^n,1) = A083233(n) = A164640(2n) for n>=1. Proof: a(n):=T(2^n,1); a(1)=6, a(n)=8*a(n-1); A083233(1)=6 and A083233(n) is a geometric series with ratio 8 (because of its g.f.), too; A164640 = {b(1)=1, b(2)=6, b(n)=8*b(n-2)}.
T(2^n,0) = A165148(n) for n>=0, because 2*T(2^n,0) = (3*2^n-1)*4^n.
T(2^e,2) = A003951(e) for 2 <= e. Proof: T(2^e,2) = 9*8^(e-1) is a series with ratio 8 and initial term 72, as A003951(2...inf) is.
Working with consecutive powers of a prime p, we need a definition (0 <= i < e):
N(p^e,i):=#{k: 0 < k < p^e, gcd(k,p^e) = p^i} = (p-1)*p^(e-1-i). We say that these k's belong to i (respect to p^e). Note that N(p^e,0) = EulerPhi(p^e), and if 0 < k < p^e then gcd(k,p^e) = gcd(k,p^(e+1)). Let T(p^e,[i]) denote the common value of T(p^e,k)'s, where k's belong to i (q.v.PROGRAM); for example, T(p^e,[0]) = T(p^e,1). The number of the 2 X 2 matrices over Z(p^e), T(p^e,0) + Sum_{i=0..e-1} T(p^e,[i])*N(p^e,i) = p^(4e) will be useful.
On the hexagon property: Let prime p be given and let T(p^e,[0]), T(p^e,[1]), T(p^e,[2]), ..., T(p^e,[e-2]), T(p^e,[e-1]) form the e-th row of a Pascal-like triangle, e>=1. Let denote X(r,s) an element of the triangle and its value T(p^r,[s]). Let positive integers a and b given, so that the entries A(m-a,n-b), B(m-a,n), C(m,n+a), D(m+b,n+a), E(m+b,n), F(m,n-b) of the triangle form a hexagon spaced around T(p^m,[n]); if a=b=1 then they surround it. If A*C*E = B*D*F, then we say that the triangle T(.,.) has the "hexagon property". (In the case of binomial coefficients X(r,s) = COMB(r,s), the "hexagon property" holds (see [Gupta]) and moreover gcd(A,C,E) = gcd(B,D,F) (see [Hitotumatu & Sato]).)
Corollary 2.2 in [Brent & McKay] says that, for the d X d matrices over Z(p^e), (mutatis mutandis) T_d(p^e,0) = K*(1-P(d+e-1)/P(e-1)) and T_d(p^e,[i]) = K*(q^e)*((1-q^d)/(1-q))*P(d+i-1)/P(i), where q=1/p, K=(p^e)^(d^2), P(t) = Product_{j=1..t} (1-q^j), P(0):=1. (For the case d=2, we have T(p^e,[i]) = (p+1)*(p^(i+1)-1)*p^(3*e-i-2).) Due to [Brent & McKay], it can be simply proved that for d X d matrices the "hexagon property" is true. The formulation implies an obvious generalization: For the entries A(r,u), B(r,v), C(s,w), D(t,w), E(t,v), F(s,u) of the T_d(.,.)-triangle, a hexagon-like property A*C*E = B*D*F holds. This is false in general for the COMB(.,.)-triangle.
Another (rotated-hexagon-like) property: for the entries A(m-b1,n), B(m-a1,n+c2), C(m+a2,n+c2), D(m+b2,n), E(m+a2,n-c1), F(m-a1,n-c1) of the T_d(.,.)-triangle, the property A*C*E = B*D*F holds, if and only if 2*(a1 + a2) = b1 + b2. This is also in general false for COMB(.,.)-triangle.

Examples

			From _Andrew Howroyd_, Jul 16 2018: (Start)
Triangle begins:
    1;
   10,   6;
   33,  24,  24;
   88,  48,  72,  48;
  145, 120, 120, 120, 120;
  330, 144, 240, 198, 240, 144;
  385, 336, 336, 336, 336, 336, 336;
  736, 384, 576, 384, 672, 384, 576, 384;
  945, 648, 648, 864, 648, 648, 864, 648, 648;
  ... (End)
		

Crossrefs

Column k=0 is A020478.
Column k=1 is A000056.
Row sums are A005353.

Programs

  • Other
      (* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
    				
  • PARI
    S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
    T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
    for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018

Formula

T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
Sum_{k=1..n-1, gcd(k,n)=1} T(n,k) = A000252(n). - Andrew Howroyd, Jul 16 2018

Extensions

Terms a(24)-a(55) from b-file by Andrew Howroyd, Jul 16 2018

A065430 Order of commutator subgroup of GL(2,Z_n) (invertible 2 X 2 matrices mod n: A000252).

Original entry on oeis.org

1, 3, 24, 24, 120, 72, 336, 192, 648, 360, 1320, 576, 2184, 1008, 2880, 1536, 4896, 1944, 6840, 2880, 8064, 3960, 12144, 4608, 15000, 6552, 17496, 8064, 24360, 8640, 29760, 12288, 31680, 14688, 40320, 15552, 50616, 20520, 52416, 23040, 68880
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 16 2001

Keywords

Comments

This sequence may be multiplicative. - Mitch Harris, Apr 19 2005
Multiplicative because A000056 is. - Max Alekseyev

Crossrefs

Programs

  • Mathematica
    Table[n DivisorSum[n, #^2 MoebiusMu[n/#] &]/(1 + Boole[EvenQ@ n]), {n, 41}] (* Michael De Vlieger, Mar 17 2018, after Harvey P. Dale at A000056 *)
    f[p_, e_] := (p^2 - 1)*p^(3*e-2); f[2, e_] := 3*2^(3*e-3); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    sl(n) = n * sumdiv(n, d, d^2 * moebius(n / d));
    a(n) = if (n%2, sl(n), sl(n)/2); \\ Michel Marcus, Mar 16 2018

Formula

For odd n: a(n) = A000056(n) i.e. the commutator subgroup is SL(2, Z_n);
for even n: a(n) = A000056(n) / 2 (it has index 2 in SL(2, Z_n)).
From Amiram Eldar, Nov 30 2022: (Start)
Multiplicative with a(2^e) = 3*2^(3*e-3), and a(p^e) = (p^2-1)*p^(3*e-2) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^4, where c = 11/(56*zeta(3)) = 0.1634103... . (End)

Extensions

More terms from Max Alekseyev, Jan 22 2010
Previous Showing 11-20 of 25 results. Next