A050398
Exponential reversion of sequence of involutions (A000085).
Original entry on oeis.org
1, -2, 8, -50, 434, -4864, 66996, -1095324, 20724756, -445310616, 10708301328, -284863999848, 8304979127496, -263299784899488, 9018495674420592, -331867682445078000, 13057137391032043920, -546957850901539335840
Offset: 1
Original entry on oeis.org
1, 4, 26, 232, 2620, 35696, 568504, 10349536, 211799312, 4809701440, 119952692896, 3257843882624, 95680443760576, 3020676745975552, 101990226254706560, 3666624057550245376, 139813029266338603264
Offset: 0
-
a := proc(n) option remember: if n = 0 then RETURN(1) fi: if n = 1 then RETURN(1) fi: a(n-1)+(n-1)*a(n-2): end: for i from 1 to 61 by 2 do printf(`%d,`,a(i)) od: # James Sellers, Feb 11 2002
-
Table[n! 2^n LaguerreL[n,1/2,-1/2],{n,0,20}] (* Harvey P. Dale, Mar 11 2013 *)
Table[(-2)^n HypergeometricU[-n, 3/2, -(1/2)], {n, 0, 90}] (* Emanuele Munarini, Aug 31 2017 *)
A214851
Irregular triangular array read by rows. T(n,k) is the number of n-permutations that have exactly k square roots. n >= 1, 0 <= k <= A000085(n).
Original entry on oeis.org
0, 1, 1, 0, 1, 3, 2, 0, 0, 1, 12, 8, 3, 0, 0, 0, 0, 0, 0, 0, 1, 60, 24, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 450, 184, 0, 0, 85, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
0, 1,
1, 0, 1,
3, 2, 0, 0, 1,
12, 8, 3, 0, 0, 0, 0, 0, 0, 0, 1,
60, 24, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
450, 184, 0, 0, 85, 0,0,0,...,1 where the 1 is in column k=76.
T(5,2)= 35 because we have 20 5-permutations of the type (1,2,3)(4)(5) and 15 of the type (1,2)(3,4)(5). These have 2 square roots:(1,3,2)(4)(5),(1,3,2)(4,5) and (1,3,2,4)(5),(3,1,4,2)(5) respectively.
-
(* Warning: the code is very inefficient, it takes about one minute to run on a laptop computer. *) a={1,2,4,10,26}; Table[Distribution[Distribution[Table[MultiplicationTable[Permutations[m], Permute[#1,#2]&][[n]][[n]], {n,1,m!}], Range[1,m!]], Range[0,a[[m]]]], {m,1,5}] //Grid
A246552
2-adic valuation of the number of involutions of n (A000085).
Original entry on oeis.org
0, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 3, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 6, 6, 7, 8, 7, 7, 8, 9, 8, 8, 9, 10, 9, 9, 10, 11, 10, 10, 11, 12, 11, 11, 12, 13, 12, 12, 13, 14, 13, 13, 14, 15, 14, 14, 15, 16, 15, 15, 16, 17, 16, 16, 17, 18, 17, 17, 18, 19, 18, 18, 19, 20, 19, 19, 20, 21, 20, 20, 21, 22, 21, 21, 22, 23, 22, 22, 23
Offset: 0
-
I:=[0, 0, 1, 2, 1]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..100]]; // Vincenzo Librandi, Sep 06 2014
-
seq(n-2*floor(n/4)-floor((n+3)/4), n=0..100) ; # Ridouane Oudra, Dec 11 2023
-
CoefficientList[Series[x^2 (1 + x - x^2)/((1 - x)^2 (1 + x) (1 + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 06 2014 *)
LinearRecurrence[{1,0,0,1,-1},{0,0,1,2,1},100] (* Harvey P. Dale, Jun 13 2016 *)
-
N=166; x='x+O('x^N);
v=Vec(serlaplace(exp(x+x^2/2)));
vector(#v,n,valuation(v[n],2))
-
concat([0,0],Vec(x^2*(1+x-x^2)/((1-x)^2*(1+x)*(1+x^2))+O(x^166)))
-
a(n) = (3 - (-1)^n - (1+3*I)*(-I)^n - (1-I*3)*I^n + 2*n)/8 \\ Colin Barker, Oct 16 2015
A264737
Primes which divide some term of A000085 (numbers of involutions).
Original entry on oeis.org
2, 5, 13, 19, 23, 29, 31, 43, 53, 59, 61, 67, 73, 79, 83, 89, 97, 103, 131, 137, 151, 157, 163, 173, 179, 181, 191, 197, 199, 211, 229, 233, 239, 241, 281, 293, 307, 317, 347, 359, 367, 373, 379, 389, 397, 409, 419, 421, 431, 433, 443, 449, 457, 461, 463, 479, 487, 491, 499
Offset: 1
23 divides A000085(11) = 35696 = 2^4 * 23 * 97, so it appears in this set. The sequence A000085 mod 3 cycles: 1,1,2,1,1,2,..., so the prime factor 3 does not appear in this set.
-
filter:= proc(p) local a,b,c,n,R;
if not isprime(p) then return false fi;
a:= 1; b:= 1;
R[1,1,1]:= 1;
for n from 2 do
c:= a + (n-1)*b mod p;
if c = 0 then return true fi;
b:= a; a:= c;
if R[a,b,(n mod p)] = 1 then return false fi;
R[a,b,(n mod p)]:= 1;
od:
end proc:
select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Nov 22 2015
-
A85 = DifferenceRoot[Function[{y, n}, {(-n - 1) y[n] - y[n + 1] + y[n + 2] == 0, y[1] == 1, y[2] == 2}]];
selQ[p_] := AnyTrue[Range[p - 1], Divisible[A85[#], p]&]; selQ[2] = True;
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[selQ[p], Print[p]; Sow[p] ]]][[2, 1]] (* Jean-François Alcover, Jul 28 2020 *)
A306009
Inverse Weigh transform of A000085.
Original entry on oeis.org
1, 2, 2, 7, 14, 43, 130, 446, 1544, 5773, 22170, 89356, 370198, 1591379, 7020014, 31922981, 148679262, 710828036, 3474337098, 17379964444, 88739068866, 462670294023, 2458638559154, 13317850411827, 73432568553848, 412120738922369, 2351720323257872
Offset: 1
-
g:= proc(n) option remember;
`if`(n<2, 1, g(n-1)+(n-1)*g(n-2))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= proc(n) option remember; g(n)-b(n, n-1) end:
seq(a(n), n=1..30);
-
g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
a[n_] := a[n] = g[n] - b[n, n - 1];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Oct 27 2021, after Alois P. Heinz *)
A007868
Number of inverse pairs of elements in symmetric group S_n, or pairs of total orders on n nodes (average of A000085 and A000142).
Original entry on oeis.org
1, 1, 2, 5, 17, 73, 398, 2636, 20542, 182750, 1819148, 19976248, 239570876, 3113794652, 43590340840, 653842358768, 10461418047368, 177843819947656, 3201187351520912, 60822552609266720, 1216451015967652048, 25545471145831066448, 562000364198246159456
Offset: 0
-
(Table[n!, {n, 0, 20}] + Range[0, 20]! CoefficientList[Series[Exp[x + x^2/2], {x, 0, 20}],x])/2 (* Geoffrey Critzer, Nov 07 2011 *)
A152736
Triangle read by rows: M*Q, where M = an infinite lower triangular matrix with A140456 in every column: (1, 1, 1, 3, 7, 23, 71, ...) and Q = a matrix with A000085 as the main diagonal the rest zeros.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 1, 2, 4, 7, 3, 2, 4, 10, 23, 7, 6, 4, 10, 26, 71, 23, 14, 12, 10, 26, 76, 255, 71, 46, 28, 30, 26, 76, 232, 911, 255, 142, 92, 70, 78, 76, 232, 764, 3535, 911, 510, 284, 230, 182, 228, 232, 764, 2620
Offset: 1
First few rows of the triangle:
1;
1, 1;
1, 1, 2;
3, 1, 2, 4;
7, 3, 2, 4, 10;
23, 7, 6, 4, 10, 26;
71, 23, 14, 12, 10, 26, 76;
255, 71, 46, 28, 30, 26, 76, 232;
911, 255, 142, 92, 70, 78, 76, 232, 764;
3535, 911, 510, 284, 230, 182, 228, 232, 764, 2620;
13903, 3535, 1822, 1020, 710, 598, 532, 696, 764, 2620, 9496;
...
Row r = (3, 1, 2, 4) = (3*1, 1*1, 1*2, 1*4) = termwise products of (3, 1, 1, 1) and (1, 1, 2, 4), where A000085 = (1, 1, 2, 4, 10, 26, 76, ...).
A172395
G.f. satisfies: A(x) = G(x/A(x)) where o.g.f. G(x) = A(x*G(x)) = Sum_{n>=0} A000085(n)*x^n.
Original entry on oeis.org
1, 1, 1, 0, 1, 0, 4, 0, 27, 0, 248, 0, 2830, 0, 38232, 0, 593859, 0, 10401712, 0, 202601898, 0, 4342263000, 0, 101551822350, 0, 2573779506192, 0, 70282204726396, 0, 2057490936366320, 0, 64291032462761955, 0, 2136017303903513184, 0
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^4 + 4*x^6 + 27*x^8 + 248*x^10 +...
where G(x) = A(x*G(x)) is the o.g.f. of A000085:
G(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 76*x^6 + 232*x^7 +...
while the e.g.f. of A000085 is given by:
exp(x+x^2/2) = 1 + x + 2*x^2/2! + 4*x^3/3! + 10*x^4/4! + 26*x^5/5! +...
-
{a(n)=local(G=sum(m=0,n,m!*polcoeff(exp(x+x^2/2+x*O(x^m)),m)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G),n)}
A188287
Convolution of A000085 with itself.
Original entry on oeis.org
1, 2, 5, 12, 32, 88, 260, 800, 2604, 8824, 31340, 115568, 443760, 1763456, 7260256, 30835712, 135124496, 609027360, 2822461648, 13417923008, 65401203584, 326242088064, 1664539966400, 8674167861760, 46140838036160, 250248380068736, 1383064482739392, 7782094359642880
Offset: 0
Comments