A182172
Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
Offset: 0
A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 9, 10, 10, 10, 10, 10, ...
0, 1, 10, 21, 25, 26, 26, 26, 26, ...
0, 1, 20, 51, 70, 75, 76, 76, 76, ...
0, 1, 35, 127, 196, 225, 231, 232, 232, ...
0, 1, 70, 323, 588, 715, 756, 763, 764, ...
Columns k=0-12 give:
A000007,
A000012,
A001405,
A001006,
A005817,
A049401,
A007579,
A007578,
A007580,
A212915,
A212916,
A229053,
A229068.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..15);
-
h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
a[n_, k_] := g[n, k, {}];
Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
A111924
Triangle of Bessel numbers read by rows. Row n gives T(n,n), T(n,n-1), T(n,n-2), ..., T(n,1) for n >= 1.
Original entry on oeis.org
1, 1, 1, 1, 3, 0, 1, 6, 3, 0, 1, 10, 15, 0, 0, 1, 15, 45, 15, 0, 0, 1, 21, 105, 105, 0, 0, 0, 1, 28, 210, 420, 105, 0, 0, 0, 1, 36, 378, 1260, 945, 0, 0, 0, 0, 1, 45, 630, 3150, 4725, 945, 0, 0, 0, 0, 1, 55, 990, 6930, 17325, 10395, 0, 0, 0, 0, 0, 1, 66, 1485, 13860, 51975, 62370
Offset: 1
Triangle begins:
1
1 1
1 3 0
1 6 3 0
1 10 15 0 0
1 15 45 15 0 0
1 21 105 105 0 0 0
1 28 210 420 105 0 0 0
1 36 378 1260 945 0 0 0 0
- J. Y. Choi and J. D. H. Smith, On the unimodality and combinatorics of Bessel numbers, Discrete Math., 264 (2003), 45-53.
-
T[n_, 0] = 0; T[1, 1] = 1; T[2, 1] = 1; T[n_, k_] := T[n - 1, k - 1] + (n - 1)T[n - 2, k - 1]; Table[T[n, k], {n, 12}, {k, n, 1, -1}] // Flatten (* Robert G. Wilson v *)
A001189
Number of degree-n permutations of order exactly 2.
Original entry on oeis.org
0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695, 140151, 568503, 2390479, 10349535, 46206735, 211799311, 997313823, 4809701439, 23758664095, 119952692895, 618884638911, 3257843882623, 17492190577599, 95680443760575, 532985208200575, 3020676745975551
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..800
- N. Chheda, M. K. Gupta, RNA as a Permutation, arXiv:1403.5477 [q-bio.BM], 2014.
- R. B. Herrera, The number of elements of given period in finite symmetric group, Amer. Math. Monthly 64, 1957, 488-490.
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
- J. Rangel-Mondragon, Selected Themes in Computational Non-Euclidean Geometry: Part 1, The Mathematica Journal 15 (2013); http://www.mathematica-journal.com/data/uploads/2013/07/Rangel-Mondragon_Selected-1.pdf
- Martin Svatoš, Peter Jung, Jan Tóth, Yuyi Wang, and Ondřej Kuželka, On Discovering Interesting Combinatorial Integer Sequences, arXiv:2302.04606 [cs.LO], 2023, p. 17.
- Thotsaporn Thanatipanonda, Inversions and major index for permutations, Math. Mag., April 2004.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2) -Exp(x) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 14 2019
-
a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
a(n-1) +(n-1) *(1+a(n-2)))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Oct 24 2012
# alternative:
A001189 := proc(n)
local a,prs,p,k ;
a := 0 ;
for prs from 1 to n/2 do
p := product(binomial(n-2*k,2),k=0..prs-1) ;
a := a+p/prs!;
end do:
a;
end proc:
seq(A001189(n),n=1..13) ; # R. J. Mathar, Jan 04 2017
-
RecurrenceTable[{a[1]==0,a[2]==1,a[n]==a[n-1]+(1+a[n-2])(n-1)},a[n],{n,25}] (* Harvey P. Dale, Jul 27 2011 *)
-
{a(n) = sum(j=1,floor(n/2), n!/(j!*(n-2*j)!*2^j))}; \\ G. C. Greubel, May 14 2019
-
m = 30; T = taylor(exp(x +x^2/2) - exp(x), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019
A014068
a(n) = binomial(n*(n+1)/2, n).
Original entry on oeis.org
1, 1, 3, 20, 210, 3003, 54264, 1184040, 30260340, 886163135, 29248649430, 1074082795968, 43430966148115, 1917283000904460, 91748617512913200, 4730523156632595024, 261429178502421685800, 15415916972482007401455, 966121413245991846673830, 64123483527473864490450300
Offset: 0
From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(3) = 20 loop-graph edge-sets (loops shown as singletons):
{} {{1}} {{1},{2}} {{1},{2},{3}}
{{1},{1,2}} {{1},{2},{1,2}}
{{2},{1,2}} {{1},{2},{1,3}}
{{1},{2},{2,3}}
{{1},{3},{1,2}}
{{1},{3},{1,3}}
{{1},{3},{2,3}}
{{2},{3},{1,2}}
{{2},{3},{1,3}}
{{2},{3},{2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,3},{2,3}}
{{2},{1,2},{1,3}}
{{2},{1,2},{2,3}}
{{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
(End)
-
[Binomial(Binomial(n+1,2), n): n in [0..40]]; // G. C. Greubel, Feb 19 2022
-
Binomial[First[#],Last[#]]&/@With[{nn=20},Thread[{Accumulate[ Range[ 0,nn]], Range[ 0,nn]}]] (* Harvey P. Dale, May 27 2014 *)
-
from math import comb
def A014068(n): return comb(comb(n+1,2),n) # Chai Wah Wu, Jul 14 2024
-
[(binomial(binomial(n+1, n-1), n)) for n in range(20)] # Zerinvary Lajos, Nov 30 2009
A321765
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and s is Schur functions.
Original entry on oeis.org
1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 2, 1, 1, 2, -1, -1, 1, 1, -1, 0, 0, 1, 1, -1, 0, 0, 1, -1, 1, 1, 0, 1, -1, -1, 1, 0, -1, 0, 0, 1, 0, 0, -1, 1, -1, 1, 0, -1, 1, 0, 0, -1
Offset: 1
Triangle begins:
1
1
1 -1
1 1
1 -1 1
1 0 -1
1 0 -1 1 -1
1 2 1
1 2 -1 -1 1
1 -1 0 0 1
1 -1 0 0 1 -1 1
1 0 1 -1 -1
1 0 -1 0 0 1 0 0 -1 1 -1
1 0 -1 1 0 0 -1
For example, row 12 gives: p(211) = s(4) + s(31) - s(211) - s(1111).
Cf.
A000085,
A008480,
A056239,
A082733,
A124795,
A153452,
A296188,
A296561,
A300121,
A304438,
A317552,
A317554,
A321742-
A321765.
A001472
Number of degree-n permutations of order dividing 4.
Original entry on oeis.org
1, 1, 2, 4, 16, 56, 256, 1072, 6224, 33616, 218656, 1326656, 9893632, 70186624, 574017536, 4454046976, 40073925376, 347165733632, 3370414011904, 31426411211776, 328454079574016, 3331595921852416, 37125035407900672, 400800185285464064, 4744829049220673536
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
- Alois P. Heinz, Table of n, a(n) for n = 0..570 (first 201 terms from T. D. Noe)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 25 (Dead link)
- Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
-
spec := [S, {S = Set(Union(Cycle(Z, card = 1), Cycle(Z, card = 2), Cycle(Z, card = 4)))}, labeled]; seq(combstruct[count](spec, size = n), n = 0 .. 23); # David Radcliffe, Aug 29 2025
-
n = 23; CoefficientList[Series[Exp[x+x^2/2+x^4/4], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *)
-
a(n):=n!*sum(sum(binomial(k,j)*binomial(j,n-4*k+3*j)*(1/2)^(n-4*k+3*j)*(1/4)^(k-j),j,floor((4*k-n)/3),k)/k!,k,1,n); /* Vladimir Kruchinin, Sep 07 2010 */
-
my(N=33, x='x+O('x^N)); egf=exp(x+x^2/2+x^4/4); Vec(serlaplace(egf)) /* Joerg Arndt, Sep 15 2012 */
-
m = 30; T = taylor(exp(x + x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
A060240
Triangle T(n,k) in which n-th row gives degrees of irreducible representations of symmetric group S_n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 4, 4, 5, 5, 6, 1, 1, 5, 5, 5, 5, 9, 9, 10, 10, 16, 1, 1, 6, 6, 14, 14, 14, 14, 15, 15, 20, 21, 21, 35, 35, 1, 1, 7, 7, 14, 14, 20, 20, 21, 21, 28, 28, 35, 35, 42, 56, 56, 64, 64, 70, 70, 90, 1, 1, 8, 8, 27, 27, 28, 28, 42, 42, 42, 48, 48, 56, 56, 70, 84
Offset: 0
Triangle begins:
1;
1;
1, 1;
1, 1, 2;
1, 1, 2, 3, 3;
1, 1, 4, 4, 5, 5, 6;
...
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press, 1985.
- B. E. Sagan, The Symmetric Group, 2nd ed., Springer, 2001, New York.
Maximal entry in each row gives
A003040.
-
CharacterTable(SymmetricGroup(6)); // (say)
-
h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0,
seq(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
T:= n-> sort([g(n, n, [])])[]:
seq(T(n), n=0..10); # Alois P. Heinz, Jan 07 2013
-
h[l_List] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i<1, 0, Flatten @ Table[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := Sort[g[n, n, {}]]; T[1] = {1};
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)
A300121
Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions connected skew partitions.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 8, 4, 11, 12, 16, 12, 32, 28, 31, 8, 64, 31, 128, 33, 82, 64, 256, 28, 69, 144, 69, 86, 512, 105, 1024, 16, 208, 320, 209, 82, 2048, 704, 512, 86, 4096, 318, 8192, 216, 262, 1536, 16384, 64, 465, 262, 1232, 528, 32768, 209, 588, 245, 2912, 3328
Offset: 1
The a(9) = 11 tableaux:
1 1
1 1
.
2 1 1 1 1 1 1 2
1 1 1 2 2 2 1 2
.
1 1 1 2 1 2 1 3
2 3 1 3 3 3 2 3
.
1 2 1 3
3 4 2 4
Cf.
A000085,
A000898,
A056239,
A006958,
A138178,
A153452,
A238690,
A259479,
A259480,
A296150,
A296561,
A297388,
A299699,
A299925,
A299926,
A300056,
A300060,
A300118,
A300120,
A300122,
A300123,
A300124.
-
undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]Table[PrimePi[p],{k}]]]];
Table[Length[cos[Reverse[primeMS[n]]]],{n,50}]
A319646
Number of non-isomorphic weight-n chains of distinct multisets whose dual is also a chain of distinct multisets.
Original entry on oeis.org
1, 1, 1, 4, 4, 9, 17, 28, 41, 75, 122, 192, 314, 484, 771, 1216, 1861, 2848, 4395, 6610, 10037
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 chains:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
{{1,2,2}}
{{1},{1,1}}
{{2},{1,2}}
4: {{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{2},{1,2,2}}
5: {{1,1,1,1,1}}
{{1,1,2,2,2}}
{{1,2,2,2,2}}
{{1},{1,1,1,1}}
{{2},{1,1,2,2}}
{{2},{1,2,2,2}}
{{1,1},{1,1,1}}
{{1,2},{1,2,2}}
{{2,2},{1,2,2}}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[UnsameQ@@#,UnsameQ@@Transpose[PadRight[#]],And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,IntegerPartitions[n]}],{n,10}] (* Gus Wiseman, Jan 18 2019 *)
A053505
Number of degree-n permutations of order dividing 30.
Original entry on oeis.org
1, 1, 2, 6, 18, 90, 540, 3060, 20700, 145980, 1459800, 13854600, 140059800, 1514748600, 15869034000, 285268878000, 4109761962000, 59488383690000, 935767530036000, 13364309726748000, 240338216104020000, 4540941256642020000, 79739974380153240000
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 3, 5, 6, 10, 15, 30])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}]*a[n-j], {j, {1, 2, 3, 5, 6, 10, 15, 30}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^3/3 +x^5/5 +x^6/6 + x^10/10 +x^15/15 +x^30/30], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^2/2 +x^3/3 +x^5/5 + x^6/6 +x^10/10 +x^15/15 +x^30/30) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x +x^2/2 +x^3/3 +x^5/5 +x^6/6 +x^10/10 +x^15/15 +x^30/30), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
Comments